
Frontiers in Heat and Mass Transfer is an open access and peer-reviewed online journal that provides a central vehicle for the exchange of basic ideas in heat and mass transfer between researchers and engineers around the globe. It disseminates information of permanent interest in the area of heat and mass transfer. Theory and fundamental research in heat and mass transfer, numerical simulations and algorithms, experimental techniques, and measurements as applied to all kinds of current and emerging problems are welcome. Contributions to the journal consist of original research on heat and mass transfer in equipment, thermal systems, thermodynamic processes, nanotechnology, biotechnology, information technology, energy and power applications, as well as security and related topics.
Emerging Source Citation Index (Web of Science): 2024 Impact Factor 0.7; Ei Compendex; Scopus Citescore (Impact per Publication 2024): 2.0; SNIP (Source Normalized Impact per Paper 2024): 0.336; Google Scholar; Open J-Gate, etc.
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1351-1364, 2025, DOI:10.32604/fhmt.2025.064154 - 31 October 2025
(This article belongs to the Special Issue: Heat and Mass Transfer Applications in Engineering and Biomedical Systems: New Developments)
Abstract This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles (EVs). The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes (PHPs), in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration. Experimental evaluations conducted under different discharge conditions demonstrate that the system effectively maintains battery temperatures within the optimal range of 20–40°C, with enhanced temperature uniformity and stability. While the PHP exhibited minimal impact at low power, its role More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1365-1393, 2025, DOI:10.32604/fhmt.2025.068100 - 31 October 2025
(This article belongs to the Special Issue: Innovative Cooling Systems: Design, Optimization, and Applications)
Abstract This paper presents a thermophysical study approach for a pure environmental control system (ECS), incorporating the geometric dimensions of heat exchangers, ram air duct, and air cycle machine (ACM) blades of the Sabreliner’s environmental control system. Real flight scenarios are simulated by considering flight input variables such as altitude, aircraft speed, compression ratio of the air cycle machine, and the mass flow rate of bleed air. The study evaluates the coefficient of performance (COP) of the environmental control system, the heat exchanger efficiencies, and the work distribution of the air cycle machine based on five… More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1395-1415, 2025, DOI:10.32604/fhmt.2025.069454 - 31 October 2025
Abstract In this work, numerical simulations are performed to investigate the influence of combining ribs and triangular cavities on the thermal-hydraulic performance (THP) of MCHS at fluid velocities ranging from 1 to 4 m/s (corresponding to Reynolds numbers (Re) of 129.75 to 519). Specifically, the ribs are positioned on the bottom wall, and the rib width is equal to the mini-channel width, while the triangular cavities are arranged on the two side walls of the MCHS. By analyzing and comparing key parameters such as velocity distribution, streamline patterns, pressure drop, skin friction coefficient (Cf), Nusselt number (Nu), friction… More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1417-1441, 2025, DOI:10.32604/fhmt.2025.069024 - 31 October 2025
Abstract An inverse analysis is presented to estimate line heat source in two-dimensional steady-state and transient heat transfer problems. A constant heat source is considered in the steady-state heat transfer problem (a parameter estimation problem) and a time-varying heat source is considered in the transient heat transfer problem (a function estimation problem). Since a general irregular 2D heat conducting body is considered, a body-fitted grid generation is used to mesh the domain. Then governing equations and associated boundary and initial conditions are transformed from the physical domain to the computational domain and finite difference method is… More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1443-1454, 2025, DOI:10.32604/fhmt.2025.068060 - 31 October 2025
(This article belongs to the Special Issue: Issues of Hydro and Gas Dynamics, Heat and Mass Transfer in Mechanical Engineering and Energy)
Abstract Industry and energy continue to require piston engines (PICE) at a high level worldwide. Therefore, science and technology must urgently work on improving the PICE working cycle. Improving the quality of the intake process of the working fluid into the cylinder is one of the most effective ways to improve the operational performance of PICE. The purpose of the study was to assess the impact of various cylinder head (CylH) designs on the gas-dynamic and heat-exchange qualities of air flows within an engine model’s intake system. Three different CylH designs were studied: the basic configuration… More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1455-1475, 2025, DOI:10.32604/fhmt.2025.069512 - 31 October 2025
(This article belongs to the Special Issue: Advances in Heat and Mass Transfer: Integrating Numerical Methods with Artificial Intelligence, Machine Learning, and Data-Driven Approaches)
Abstract The temperature prediction of the Clamp-conductor coupling zone plays a crucial role in ensuring the safe and stable operation of overhead transmission lines and optimizing the thermal stability margin of transmission lines. While existing research in this field has thoroughly explored temperature rise prediction, the focus has been relatively narrow, either targeting conductors exclusively or focusing solely on clamps, with little attention given to the temperature rise in the conductor-clamp coupling zone or the influence of clamp temperature on conductor temperature rise. Based on this, considering axial heat transfer between the clamp and the conductor,… More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1477-1493, 2025, DOI:10.32604/fhmt.2025.067933 - 31 October 2025
Abstract The increasing demand due to development and advancement in every field of life has caused the depletion of fossil fuels. This depleting fossil fuel reserve throughout the world has enforced to get energy from alternative/renewable sources. One of the economical ways to get energy is through the utilization of solar ponds. In this study, a mathematical model of a salt gradient solar pond under the Islamabad climatic conditions has been analyzed for the first time. The model uses a one-dimensional finite difference explicit method for optimization of different zone thicknesses. The model depicts that NCZ More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1495-1509, 2025, DOI:10.32604/fhmt.2025.071263 - 31 October 2025
(This article belongs to the Special Issue: Microscale Heat Transfer and Renewable Energy Utilization)
Abstract High-temperature radiative cooling is essential for solar absorbers, as it mitigates efficiency degradation resulting from thermal accumulation. While porous structures have proven effective in enhancing absorber performance, practical manufacturing processes and prolonged operational wear inevitably introduce surface roughness and structural deviations, which profoundly impact radiative properties. This study constructs a ZnS/Ag solar absorber model with surface roughness and employs the finite-difference time-domain method to investigate how characteristic length, surface roughness, porosity, pore shape factor, and taper influence its radiative properties in the 3 μm–5 μm band at 750 K. Results show optimal absorption at a More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1511-1527, 2025, DOI:10.32604/fhmt.2025.069359 - 31 October 2025
Abstract This study rigorously examines the interplay between viscous dissipation, magnetic effects, and thermal radiation on the flow behavior of a non-Newtonian Carreau squeezed fluid passing by a sensor surface within a micro cantilever channel, aiming to deepen our understanding of heat transport processes in complex fluid dynamics scenarios. The primary objective is to elucidate how physical operational parameters influence both the velocity of fluid flow and its temperature distribution, utilizing a comprehensive numerical approach. Employing a combination of mathematical modeling techniques, including similarity transformation, this investigation transforms complex partial differential equations into more manageable ordinary… More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1529-1554, 2025, DOI:10.32604/fhmt.2025.067869 - 31 October 2025
(This article belongs to the Special Issue: Advances in Heat and Mass Transfer: Integrating Numerical Methods with Artificial Intelligence, Machine Learning, and Data-Driven Approaches)
Abstract The present study investigates the dynamic behavior of a ternary-hybrid nanofluid within a tapered asymmetric channel, focusing on the impact of unsteady oscillatory flow under the influence of a magnetic field. This study addresses temperature-sensitive water transport mechanisms relevant to industrial applications such as thermal management and energy-efficient fluid transport. By suspending nanoparticles of diverse shapes-platelets, blades, and spheres in a hybrid base fluid comprising cobalt ferrite, magnesium oxide, and graphene oxide, the study examines the influence of both small and large volume fraction values. The governing equations are converted into a dimensionless form. With More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1555-1574, 2025, DOI:10.32604/fhmt.2025.069392 - 31 October 2025
Abstract Magnetohydrodynamic (MHD) radiative chemically reactive mixed convection flow of a hybrid nanofluid (Al2O3–Cu/H2O) across an inclined, porous, and stretched sheet is examined in this study, along with its unsteady heat and mass transport properties. The hybrid nanofluid’s enhanced heat transfer efficiency is a major benefit in high-performance engineering applications. It is composed of two separate nanoparticles suspended in a base fluid and is chosen for its improved thermal properties. Thermal radiation, chemical reactions, a transverse magnetic field, surface stretching with time, injection or suction through the porous medium, and the effect of inclination, which introduces gravity-induced… More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1575-1593, 2025, DOI:10.32604/fhmt.2025.067097 - 31 October 2025
(This article belongs to the Special Issue: Heat Transfer Analysis and Optimization in Energy Systems)
Abstract The work considers the problem of gas hydrate dissociation in a porous medium using the two-term Forchheimer law, corresponding to high flow rates of reservoir fluids. Such rates can arise during the decomposition of gas hydrates, since a large amount of gas is released. Intensive emissions of gases from the earth’s interior are observed on the ocean floor. They are also associated with a large number of subvertical geological structures under the ocean floor, coming to the surface in the form of local ring funnels (pockmarks). Many similar objects have also been found on land.… More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1595-1620, 2025, DOI:10.32604/fhmt.2025.068205 - 31 October 2025
(This article belongs to the Special Issue: Advancements in Heat Transfer Research for Thermal Energy Storage: Emerging Trends and Real-World Applications)
Abstract This paper presents a comprehensive experimental and numerical investigation of radiant floor heating (RFH) systems integrated with phase change material (PCM)-based thermal energy storage (TES). The study compares two underfloor pipe configurations: double serpentine and spiral. It also looks at how well a paraffin wax PCM system works with compact heat exchanger-type TES units during winter in Iraq. Key performance indicators including discharge temperature, heat transfer rate, liquid fraction evolution, and temperature uniformity were assessed through in situ experimental measurements and ANSYS fluent simulations. Results demonstrate that the spiral design provides slightly more uniform temperature distribution… More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1621-1637, 2025, DOI:10.32604/fhmt.2025.072268 - 31 October 2025
(This article belongs to the Special Issue: Innovations in Drying Technologies: Bridging Industrial, Environmental, and Energy Efficiency Challenges)
Abstract Freeze-drying of structurally heterogeneous biomaterials such as porcine aorta presents considerable modeling challenges due to their inherent multilayer composition and moving sublimation interfaces. Conventional models often overlook structural anisotropy and dynamic boundary progression, while experimental determination of key parameters under cryogenic conditions remains difficult. To address these, this study develops a heat and mass transfer model incorporating a dynamic node strategy for the sublimation interface, which effectively handles continuous computational domain deformation. Additionally, specialized fixed nodes were incorporated to adapt to the multilayer structure and its spatially varying thermophysical properties. A novel non-contact gravimetric system More >
Graphic Abstract
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1639-1660, 2025, DOI:10.32604/fhmt.2025.069063 - 31 October 2025
Abstract In this paper, the authors examine various slip effects on the magnetic field and thermal radiative impacts on the flow, mass and heat transfer of a Jeffrey nanofluid over a 2-dimensional inclined stretching sheet by a porous media. The offered work is modelled to be in the form of a combination of coupled highly nonlinear partial differential equations in dimensional contexts. Governing equations were obtained, dimensionless parameters were defined in terms of similarity parameters, and the solutions were obtained by the Homotopy Analysis Method (HAM). The analysis is significant as the effects of viscosity are… More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1661-1680, 2025, DOI:10.32604/fhmt.2025.070787 - 31 October 2025
Abstract Targeting spontaneous coal combustion during stacking, we developed an efficient heat dissipation & self-supplied wireless temperature measurement system (SPWTM) with gravity heat pipe-thermoelectric integration for dual safety. The heat transfer characteristics and temperature measurement optimization of the system are experimentally investigated and verified in practical applications. The results show that, firstly, the effects of coal pile heat production power and burial depth, along with heat pipe startup and heat transfer characteristics. At 60 cm burial depth, the condensation section dissipates 98% coal pile heat via natural convection. Secondly, for the temperature measurement error caused by… More >
Open Access
ARTICLE
Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1681-1700, 2025, DOI:10.32604/fhmt.2025.066814 - 31 October 2025
Abstract The current work aims to numerically investigate the impact of using (50% ZnO and 50% Al2O3) hybrid nanofluid (HNf) on the performance of convective heat transfer inside a horizontal wavy micro-channel. This issue represents a novel approach that has not been extensively covered in previous research and provides more valuable insights into the performance of HNfs in complex flow geometries. The conjugate heat transfer approach is used to demonstrate the influence of adding hybrid nanoparticles (50% Al2O3 and 50% ZnO) to pure water on the rate of heat transfer. The governing equations are numerically solved by… More >