Home / Journals / CMC / Vol.81, No.1, 2024
Special Issues
Table of Content
  • Open AccessOpen Access

    REVIEW

    Enhancing Internet of Things Intrusion Detection Using Artificial Intelligence

    Shachar Bar1, P. W. C. Prasad2, Md Shohel Sayeed3,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1-23, 2024, DOI:10.32604/cmc.2024.053861 - 15 October 2024
    (This article belongs to the Special Issue: AI and Data Security for the Industrial Internet)
    Abstract Escalating cyber security threats and the increased use of Internet of Things (IoT) devices require utilisation of the latest technologies available to supply adequate protection. The aim of Intrusion Detection Systems (IDS) is to prevent malicious attacks that corrupt operations and interrupt data flow, which might have significant impact on critical industries and infrastructure. This research examines existing IDS, based on Artificial Intelligence (AI) for IoT devices, methods, and techniques. The contribution of this study consists of identification of the most effective IDS systems in terms of accuracy, precision, recall and F1-score; this research also… More >

  • Open AccessOpen Access

    REVIEW

    Exploring Frontier Technologies in Video-Based Person Re-Identification: A Survey on Deep Learning Approach

    Jiahe Wang1, Xizhan Gao1,*, Fa Zhu2, Xingchi Chen3
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 25-51, 2024, DOI:10.32604/cmc.2024.054895 - 15 October 2024
    Abstract Video-based person re-identification (Re-ID), a subset of retrieval tasks, faces challenges like uncoordinated sample capturing, viewpoint variations, occlusions, cluttered backgrounds, and sequence uncertainties. Recent advancements in deep learning have significantly improved video-based person Re-ID, laying a solid foundation for further progress in the field. In order to enrich researchers’ insights into the latest research findings and prospective developments, we offer an extensive overview and meticulous analysis of contemporary video-based person Re-ID methodologies, with a specific emphasis on network architecture design and loss function design. Firstly, we introduce methods based on network architecture design and loss… More >

  • Open AccessOpen Access

    REVIEW

    Internet Inter-Domain Path Inferring: Methods, Applications, and Future Directions

    Xionglve Li, Chengyu Wang, Yifan Yang, Changsheng Hou, Bingnan Hou, Zhiping Cai*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 53-78, 2024, DOI:10.32604/cmc.2024.055186 - 15 October 2024
    Abstract The global Internet is a complex network of interconnected autonomous systems (ASes). Understanding Internet inter-domain path information is crucial for understanding, managing, and improving the Internet. The path information can also help protect user privacy and security. However, due to the complicated and heterogeneous structure of the Internet, path information is not publicly available. Obtaining path information is challenging due to the limited measurement probes and collectors. Therefore, inferring Internet inter-domain paths from the limited data is a supplementary approach to measure Internet inter-domain paths. The purpose of this survey is to provide an overview… More >

  • Open AccessOpen Access

    REVIEW

    Wearable Healthcare and Continuous Vital Sign Monitoring with IoT Integration

    Hamed Taherdoost1,2,3,4,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 79-104, 2024, DOI:10.32604/cmc.2024.054378 - 15 October 2024
    Abstract Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care, which is essential for independent living, especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common. Recent advances in the Internet of Things (IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition, gaining significant attention in personalized healthcare. This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring. Relevant papers were extracted and analyzed using a systematic numerical review method, covering various More >

  • Open AccessOpen Access

    REVIEW

    Digital Image Steganographer Identification: A Comprehensive Survey

    Qianqian Zhang1,2,3, Yi Zhang1,2, Yuanyuan Ma3, Yanmei Liu1,2, Xiangyang Luo1,2,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 105-131, 2024, DOI:10.32604/cmc.2024.055735 - 15 October 2024
    Abstract The rapid development of the internet and digital media has provided convenience while also posing a potential risk of steganography abuse. Identifying steganographer is essential in tracing secret information origins and preventing illicit covert communication online. Accurately discerning a steganographer from many normal users is challenging due to various factors, such as the complexity in obtaining the steganography algorithm, extracting highly separability features, and modeling the cover data. After extensive exploration, several methods have been proposed for steganographer identification. This paper presents a survey of existing studies. Firstly, we provide a concise introduction to the More >

  • Open AccessOpen Access

    REVIEW

    Robust Deep Image Watermarking: A Survey

    Yuanjing Luo, Xichen Tan, Zhiping Cai*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 133-160, 2024, DOI:10.32604/cmc.2024.055150 - 15 October 2024
    Abstract In the era of internet proliferation, safeguarding digital media copyright and integrity, especially for images, is imperative. Digital watermarking stands out as a pivotal solution for image security. With the advent of deep learning, watermarking has seen significant advancements. Our review focuses on the innovative deep watermarking approaches that employ neural networks to identify robust embedding spaces, resilient to various attacks. These methods, characterized by a streamlined encoder-decoder architecture, have shown enhanced performance through the incorporation of novel training modules. This article offers an in-depth analysis of deep watermarking’s core technologies, current status, and prospective More >

  • Open AccessOpen Access

    ARTICLE

    Development of Multi-Agent-Based Indoor 3D Reconstruction

    Hoi Chuen Cheng, Frederick Ziyang Hong, Babar Hussain, Yiru Wang, Chik Patrick Yue*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 161-181, 2024, DOI:10.32604/cmc.2024.053079 - 15 October 2024
    (This article belongs to the Special Issue: Intelligent Manufacturing, Robotics and Control Engineering)
    Abstract Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies. This work contributes to a framework addressing localization, coordination, and vision processing for multi-agent reconstruction. A system architecture fusing visible light positioning, multi-agent path finding via reinforcement learning, and 360° camera techniques for 3D reconstruction is proposed. Our visible light positioning algorithm leverages existing lighting for centimeter-level localization without additional infrastructure. Meanwhile, a decentralized reinforcement learning approach is developed to solve the multi-agent path finding problem, with communications among agents optimized. Our 3D reconstruction pipeline utilizes equirectangular projection from 360° cameras to More >

  • Open AccessOpen Access

    ARTICLE

    High-Secured Image LSB Steganography Using AVL-Tree with Random RGB Channel Substitution

    Murad Njoum1,2,*, Rossilawati Sulaiman1, Zarina Shukur1, Faizan Qamar1
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 183-211, 2024, DOI:10.32604/cmc.2024.050090 - 15 October 2024
    Abstract Random pixel selection is one of the image steganography methods that has achieved significant success in enhancing the robustness of hidden data. This property makes it difficult for steganalysts’ powerful data extraction tools to detect the hidden data and ensures high-quality stego image generation. However, using a seed key to generate non-repeated sequential numbers takes a long time because it requires specific mathematical equations. In addition, these numbers may cluster in certain ranges. The hidden data in these clustered pixels will reduce the image quality, which steganalysis tools can detect. Therefore, this paper proposes a… More >

  • Open AccessOpen Access

    ARTICLE

    Paraelectric Doping Simultaneously Improves the Field Frequency Adaptability and Dielectric Properties of Ferroelectric Materials: A Phase-Field Study

    Zhi Wang1, Jinming Cao1, Zhonglei Liu1, Yuhong Zhao1,2,3,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 213-228, 2024, DOI:10.32604/cmc.2024.055169 - 15 October 2024
    (This article belongs to the Special Issue: Multiscale Computational Methods for Advanced Materials and Structures)
    Abstract Recent years, the polarization response of ferroelectrics has been entirely studied. However, it is found that the polarization may disappear gradually with the continually applied of electric field. In this paper, taking K0.48Na0.52NbO3(KNN) as an example, it was demonstrated that the residual polarization began to decrease when the electric field frequency increased to a certain extent using a phase-field methods. The results showed that the content of out-of-plane domains increased first and then decreased with the increase of applied electric field frequency, the maximum polarization disappeared at high frequencies, and the hysteresis loop became elliptical. In More >

  • Open AccessOpen Access

    ARTICLE

    DeepSurNet-NSGA II: Deep Surrogate Model-Assisted Multi-Objective Evolutionary Algorithm for Enhancing Leg Linkage in Walking Robots

    Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*, Arman Ibrayeva1, Zeinel Momynkulov1,2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 229-249, 2024, DOI:10.32604/cmc.2024.053075 - 15 October 2024
    Abstract This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II (Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II) for solving complex multi-objective optimization problems, with a particular focus on robotic leg-linkage design. The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II, aiming to enhance the efficiency and precision of the optimization process. Through a series of empirical experiments and algorithmic analyses, the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from… More >

  • Open AccessOpen Access

    ARTICLE

    Efficient User Identity Linkage Based on Aligned Multimodal Features and Temporal Correlation

    Jiaqi Gao1, Kangfeng Zheng1,*, Xiujuan Wang2, Chunhua Wu1, Bin Wu2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 251-270, 2024, DOI:10.32604/cmc.2024.055560 - 15 October 2024
    Abstract User identity linkage (UIL) refers to identifying user accounts belonging to the same identity across different social media platforms. Most of the current research is based on text analysis, which fails to fully explore the rich image resources generated by users, and the existing attempts touch on the multimodal domain, but still face the challenge of semantic differences between text and images. Given this, we investigate the UIL task across different social media platforms based on multimodal user-generated contents (UGCs). We innovatively introduce the efficient user identity linkage via aligned multi-modal features and temporal correlation… More >

  • Open AccessOpen Access

    ARTICLE

    Enhancing Early Detection of Lung Cancer through Advanced Image Processing Techniques and Deep Learning Architectures for CT Scans

    Nahed Tawfik1,*, Heba M. Emara2, Walid El-Shafai3, Naglaa F. Soliman4, Abeer D. Algarni4, Fathi E. Abd El-Samie4
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 271-307, 2024, DOI:10.32604/cmc.2024.052404 - 15 October 2024
    (This article belongs to the Special Issue: Data and Image Processing in Intelligent Information Systems)
    Abstract Lung cancer remains a major concern in modern oncology due to its high mortality rates and multifaceted origins, including hereditary factors and various clinical changes. It stands as the deadliest type of cancer and a significant cause of cancer-related deaths globally. Early diagnosis enables healthcare providers to administer appropriate treatment measures promptly and accurately, leading to improved prognosis and higher survival rates. The significant increase in both the incidence and mortality rates of lung cancer, particularly its ranking as the second most prevalent cancer among women worldwide, underscores the need for comprehensive research into efficient… More >

  • Open AccessOpen Access

    ARTICLE

    Sports Events Recognition Using Multi Features and Deep Belief Network

    Bayan Alabdullah1, Muhammad Tayyab2, Yahay AlQahtani3, Naif Al Mudawi4, Asaad Algarni5, Ahmad Jalal2, Jeongmin Park6,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 309-326, 2024, DOI:10.32604/cmc.2024.053538 - 15 October 2024
    (This article belongs to the Special Issue: Metaheuristics, Soft Computing, and Machine Learning in Image Processing and Computer Vision)
    Abstract In the modern era of a growing population, it is arduous for humans to monitor every aspect of sports, events occurring around us, and scenarios or conditions. This recognition of different types of sports and events has increasingly incorporated the use of machine learning and artificial intelligence. This research focuses on detecting and recognizing events in sequential photos characterized by several factors, including the size, location, and position of people’s body parts in those pictures, and the influence around those people. Common approaches utilized, here are feature descriptors such as MSER (Maximally Stable Extremal Regions),… More >

  • Open AccessOpen Access

    ARTICLE

    PUNet: A Semi-Supervised Anomaly Detection Model for Network Anomaly Detection Based on Positive Unlabeled Data

    Gang Long, Zhaoxin Zhang*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 327-343, 2024, DOI:10.32604/cmc.2024.054558 - 15 October 2024
    Abstract Network anomaly detection plays a vital role in safeguarding network security. However, the existing network anomaly detection task is typically based on the one-class zero-positive scenario. This approach is susceptible to overfitting during the training process due to discrepancies in data distribution between the training set and the test set. This phenomenon is known as prediction drift. Additionally, the rarity of anomaly data, often masked by normal data, further complicates network anomaly detection. To address these challenges, we propose the PUNet network, which ingeniously combines the strengths of traditional machine learning and deep learning techniques… More >

  • Open AccessOpen Access

    ARTICLE

    Advancing PCB Quality Control: Harnessing YOLOv8 Deep Learning for Real-Time Fault Detection

    Rehman Ullah Khan1, Fazal Shah2,*, Ahmad Ali Khan3, Hamza Tahir2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 345-367, 2024, DOI:10.32604/cmc.2024.054439 - 15 October 2024
    Abstract Printed Circuit Boards (PCBs) are materials used to connect components to one another to form a working circuit. PCBs play a crucial role in modern electronics by connecting various components. The trend of integrating more components onto PCBs is becoming increasingly common, which presents significant challenges for quality control processes. Given the potential impact that even minute defects can have on signal traces, the surface inspection of PCB remains pivotal in ensuring the overall system integrity. To address the limitations associated with manual inspection, this research endeavors to automate the inspection process using the YOLOv8… More >

  • Open AccessOpen Access

    ARTICLE

    Re-Distributing Facial Features for Engagement Prediction with ModernTCN

    Xi Li1,2, Weiwei Zhu2, Qian Li3,*, Changhui Hou1,*, Yaozong Zhang1
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 369-391, 2024, DOI:10.32604/cmc.2024.054982 - 15 October 2024
    (This article belongs to the Special Issue: The Latest Deep Learning Architectures for Artificial Intelligence Applications)
    Abstract Automatically detecting learners’ engagement levels helps to develop more effective online teaching and assessment programs, allowing teachers to provide timely feedback and make personalized adjustments based on students’ needs to enhance teaching effectiveness. Traditional approaches mainly rely on single-frame multimodal facial spatial information, neglecting temporal emotional and behavioural features, with accuracy affected by significant pose variations. Additionally, convolutional padding can erode feature maps, affecting feature extraction’s representational capacity. To address these issues, we propose a hybrid neural network architecture, the redistributing facial features and temporal convolutional network (RefEIP). This network consists of three key components:… More >

  • Open AccessOpen Access

    ARTICLE

    Cyber Security within Smart Cities: A Comprehensive Study and a Novel Intrusion Detection-Based Approach

    Mehdi Houichi1,*, Faouzi Jaidi1,2, Adel Bouhoula3
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 393-441, 2024, DOI:10.32604/cmc.2024.054007 - 15 October 2024
    (This article belongs to the Special Issue: Security and Privacy in IoT and Smart City: Current Challenges and Future Directions)
    Abstract The expansion of smart cities, facilitated by digital communications, has resulted in an enhancement of the quality of life and satisfaction among residents. The Internet of Things (IoT) continually generates vast amounts of data, which is subsequently analyzed to offer services to residents. The growth and development of IoT have given rise to a new paradigm. A smart city possesses the ability to consistently monitor and utilize the physical environment, providing intelligent services such as energy, transportation, healthcare, and entertainment for both residents and visitors. Research on the security and privacy of smart cities is… More >

  • Open AccessOpen Access

    ARTICLE

    Demand-Responsive Transportation Vehicle Routing Optimization Based on Two-Stage Method

    Jingfa Ma, Hu Liu*, Lingxiao Chen
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 443-469, 2024, DOI:10.32604/cmc.2024.056209 - 15 October 2024
    (This article belongs to the Special Issue: The Latest Deep Learning Architectures for Artificial Intelligence Applications)
    Abstract Demand-responsive transportation (DRT) is a flexible passenger service designed to enhance road efficiency, reduce peak-hour traffic, and boost passenger satisfaction. However, existing optimization methods for initial passenger requests fall short in addressing real-time passenger needs. Consequently, there is a need to develop real-time DRT route optimization methods that integrate both initial and real-time requests. This paper presents a two-stage, multi-objective optimization model for DRT vehicle scheduling. The first stage involves an initial scheduling model aimed at minimizing vehicle configuration, and operational, and CO2 emission costs while ensuring passenger satisfaction. The second stage develops a real-time scheduling… More >

  • Open AccessOpen Access

    ARTICLE

    A Secure Framework for WSN-IoT Using Deep Learning for Enhanced Intrusion Detection

    Chandraumakantham Om Kumar1,*, Sudhakaran Gajendran2, Suguna Marappan1, Mohammed Zakariah3, Abdulaziz S. Almazyad4
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 471-501, 2024, DOI:10.32604/cmc.2024.054966 - 15 October 2024
    Abstract The security of the wireless sensor network-Internet of Things (WSN-IoT) network is more challenging due to its randomness and self-organized nature. Intrusion detection is one of the key methodologies utilized to ensure the security of the network. Conventional intrusion detection mechanisms have issues such as higher misclassification rates, increased model complexity, insignificant feature extraction, increased training time, increased run time complexity, computation overhead, failure to identify new attacks, increased energy consumption, and a variety of other factors that limit the performance of the intrusion system model. In this research a security framework for WSN-IoT, through… More >

  • Open AccessOpen Access

    ARTICLE

    Improving Generalization for Hyperspectral Image Classification: The Impact of Disjoint Sampling on Deep Models

    Muhammad Ahmad1,*, Manuel Mazzara2, Salvatore Distefano3, Adil Mehmood Khan4, Hamad Ahmed Altuwaijri5
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 503-532, 2024, DOI:10.32604/cmc.2024.056318 - 15 October 2024
    Abstract Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art (SOTA) models e.g., Attention Graph and Vision Transformer. When training, validation, and test sets overlap or share data, it introduces a bias that inflates performance metrics and prevents accurate assessment of a model’s true ability to generalize to new examples. This paper presents an innovative disjoint sampling approach for training SOTA models for the Hyperspectral Image Classification (HSIC). By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was… More >

  • Open AccessOpen Access

    ARTICLE

    A Facial Expression Recognition Method Integrating Uncertainty Estimation and Active Learning

    Yujian Wang1, Jianxun Zhang1,*, Renhao Sun2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 533-548, 2024, DOI:10.32604/cmc.2024.054644 - 15 October 2024
    Abstract The effectiveness of facial expression recognition (FER) algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data. However, labeling large datasets demands significant human, time, and financial resources. Although active learning methods have mitigated the dependency on extensive labeled data, a cold-start problem persists in small to medium-sized expression recognition datasets. This issue arises because the initial labeled data often fails to represent the full spectrum of facial expression characteristics. This paper introduces an active learning approach that integrates uncertainty estimation, aiming to improve the precision of facial… More >

  • Open AccessOpen Access

    ARTICLE

    Short-Term Wind Power Prediction Based on WVMD and Spatio-Temporal Dual-Stream Network

    Yingnan Zhao*, Yuyuan Ruan, Zhen Peng
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 549-566, 2024, DOI:10.32604/cmc.2024.056240 - 15 October 2024
    (This article belongs to the Special Issue: Machine Learning and Applications under Sustainable Development Goals (SDGs))
    Abstract As the penetration ratio of wind power in active distribution networks continues to increase, the system exhibits some characteristics such as randomness and volatility. Fast and accurate short-term wind power prediction is essential for algorithms like scheduling and optimization control. Based on the spatio-temporal features of Numerical Weather Prediction (NWP) data, it proposes the WVMD_DSN (Whale Optimization Algorithm, Variational Mode Decomposition, Dual Stream Network) model. The model first applies Pearson correlation coefficient (PCC) to choose some NWP features with strong correlation to wind power to form the feature set. Then, it decomposes the feature set More >

  • Open AccessOpen Access

    ARTICLE

    APSO-CNN-SE: An Adaptive Convolutional Neural Network Approach for IoT Intrusion Detection

    Yunfei Ban, Damin Zhang*, Qing He, Qianwen Shen
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 567-601, 2024, DOI:10.32604/cmc.2024.055007 - 15 October 2024
    Abstract The surge in connected devices and massive data aggregation has expanded the scale of the Internet of Things (IoT) networks. The proliferation of unknown attacks and related risks, such as zero-day attacks and Distributed Denial of Service (DDoS) attacks triggered by botnets, have resulted in information leakage and property damage. Therefore, developing an efficient and realistic intrusion detection system (IDS) is critical for ensuring IoT network security. In recent years, traditional machine learning techniques have struggled to learn the complex associations between multidimensional features in network traffic, and the excellent performance of deep learning techniques,… More >

  • Open AccessOpen Access

    ARTICLE

    African Bison Optimization Algorithm: A New Bio-Inspired Optimizer with Engineering Applications

    Jian Zhao1,2,*, Kang Wang1,2, Jiacun Wang3,*, Xiwang Guo4, Liang Qi5
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 603-623, 2024, DOI:10.32604/cmc.2024.050523 - 15 October 2024
    (This article belongs to the Special Issue: Recent Advances in Ensemble Framework of Meta-heuristics and Machine Learning: Methods and Applications)
    Abstract This paper introduces the African Bison Optimization (ABO) algorithm, which is based on biological population. ABO is inspired by the survival behaviors of the African bison, including foraging, bathing, jousting, mating, and eliminating. The foraging behavior prompts the bison to seek a richer food source for survival. When bison find a food source, they stick around for a while by bathing behavior. The jousting behavior makes bison stand out in the population, then the winner gets the chance to produce offspring in the mating behavior. The eliminating behavior causes the old or injured bison to More >

  • Open AccessOpen Access

    ARTICLE

    GRU Enabled Intrusion Detection System for IoT Environment with Swarm Optimization and Gaussian Random Forest Classification

    Mohammad Shoab*, Loiy Alsbatin*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 625-642, 2024, DOI:10.32604/cmc.2024.053721 - 15 October 2024
    Abstract In recent years, machine learning (ML) and deep learning (DL) have significantly advanced intrusion detection systems, effectively addressing potential malicious attacks across networks. This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things (IoT) environment, leveraging the NSL-KDD dataset. To achieve high accuracy, the authors used the feature extraction technique in combination with an auto-encoder, integrated with a gated recurrent unit (GRU). Therefore, the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization (PSO), and PSO has been employed for training the features. The More >

  • Open AccessOpen Access

    ARTICLE

    Improving Multiple Sclerosis Disease Prediction Using Hybrid Deep Learning Model

    Stephen Ojo1, Moez Krichen2,3,*, Meznah A. Alamro4, Alaeddine Mihoub5, Gabriel Avelino Sampedro6, Jaroslava Kniezova7,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 643-661, 2024, DOI:10.32604/cmc.2024.052147 - 15 October 2024
    Abstract Myelin damage and a wide range of symptoms are caused by the immune system targeting the central nervous system in Multiple Sclerosis (MS), a chronic autoimmune neurological condition. It disrupts signals between the brain and body, causing symptoms including tiredness, muscle weakness, and difficulty with memory and balance. Traditional methods for detecting MS are less precise and time-consuming, which is a major gap in addressing this problem. This gap has motivated the investigation of new methods to improve MS detection consistency and accuracy. This paper proposed a novel approach named FAD consisting of Deep Neural Network… More >

  • Open AccessOpen Access

    ARTICLE

    Research on IPFS Image Copyright Protection Method Based on Blockchain

    Xin Cong, Lanjin Feng*, Lingling Zi
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 663-684, 2024, DOI:10.32604/cmc.2024.054372 - 15 October 2024
    (This article belongs to the Special Issue: Distributed Computing with Applications to IoT and BlockChain)
    Abstract In the digital information age, distributed file storage technologies like the InterPlanetary File System (IPFS) have gained considerable traction as a means of storing and disseminating media content. Despite the advantages of decentralized storage, the proliferation of decentralized technologies has highlighted the need to address the issue of file ownership. The aim of this paper is to address the critical issues of source verification and digital copyright protection for IPFS image files. To this end, an innovative approach is proposed that integrates blockchain, digital signature, and blind watermarking. Blockchain technology functions as a decentralized and… More >

  • Open AccessOpen Access

    ARTICLE

    Adaptive Successive POI Recommendation via Trajectory Sequences Processing and Long Short-Term Preference Learning

    Yali Si1,2, Feng Li1,*, Shan Zhong1,2, Chenghang Huo3, Jing Chen4, Jinglian Liu1,2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 685-706, 2024, DOI:10.32604/cmc.2024.055141 - 15 October 2024
    Abstract Point-of-interest (POI) recommendations in location-based social networks (LBSNs) have developed rapidly by incorporating feature information and deep learning methods. However, most studies have failed to accurately reflect different users’ preferences, in particular, the short-term preferences of inactive users. To better learn user preferences, in this study, we propose a long-short-term-preference-based adaptive successive POI recommendation (LSTP-ASR) method by combining trajectory sequence processing, long short-term preference learning, and spatiotemporal context. First, the check-in trajectory sequences are adaptively divided into recent and historical sequences according to a dynamic time window. Subsequently, an adaptive filling strategy is used to… More >

  • Open AccessOpen Access

    ARTICLE

    Deploying Hybrid Ensemble Machine Learning Techniques for Effective Cross-Site Scripting (XSS) Attack Detection

    Noor Ullah Bacha1, Songfeng Lu1, Attiq Ur Rehman1, Muhammad Idrees2, Yazeed Yasin Ghadi3, Tahani Jaser Alahmadi4,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 707-748, 2024, DOI:10.32604/cmc.2024.054780 - 15 October 2024
    Abstract Cross-Site Scripting (XSS) remains a significant threat to web application security, exploiting vulnerabilities to hijack user sessions and steal sensitive data. Traditional detection methods often fail to keep pace with the evolving sophistication of cyber threats. This paper introduces a novel hybrid ensemble learning framework that leverages a combination of advanced machine learning algorithms—Logistic Regression (LR), Support Vector Machines (SVM), eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and Deep Neural Networks (DNN). Utilizing the XSS-Attacks-2021 dataset, which comprises 460 instances across various real-world traffic-related scenarios, this framework significantly enhances XSS attack detection. Our approach, which… More >

  • Open AccessOpen Access

    ARTICLE

    Obstacle Avoidance Capability for Multi-Target Path Planning in Different Styles of Search

    Mustafa Mohammed Alhassow1,*, Oguz Ata2, Dogu Cagdas Atilla1
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 749-771, 2024, DOI:10.32604/cmc.2024.055592 - 15 October 2024
    (This article belongs to the Special Issue: Intelligent Manufacturing, Robotics and Control Engineering)
    Abstract This study investigates robot path planning for multiple agents, focusing on the critical requirement that agents can pursue concurrent pathways without collisions. Each agent is assigned a task within the environment to reach a designated destination. When the map or goal changes unexpectedly, particularly in dynamic and unknown environments, it can lead to potential failures or performance degradation in various ways. Additionally, priority inheritance plays a significant role in path planning and can impact performance. This study proposes a Conflict-Based Search (CBS) approach, introducing a unique hierarchical search mechanism for planning paths for multiple robots.… More >

  • Open AccessOpen Access

    ARTICLE

    Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models

    Vesal Khean1, Chomyong Kim2, Sunjoo Ryu2, Awais Khan1, Min Kyung Hong3, Eun Young Kim4, Joungmin Kim5, Yunyoung Nam3,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 773-787, 2024, DOI:10.32604/cmc.2024.056767 - 15 October 2024
    Abstract Human Interaction Recognition (HIR) was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements. HIR requires more sophisticated analysis than Human Action Recognition (HAR) since HAR focuses solely on individual activities like walking or running, while HIR involves the interactions between people. This research aims to develop a robust system for recognizing five common human interactions, such as hugging, kicking, pushing, pointing, and no interaction, from video sequences using multiple cameras. In this study, a hybrid Deep… More >

  • Open AccessOpen Access

    ARTICLE

    Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network

    Kelan Ren, Facheng Yan, Honghua Chen, Wen Jiang, Bin Wei, Mingshu Zhang*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 789-807, 2024, DOI:10.32604/cmc.2024.055624 - 15 October 2024
    Abstract The task of cross-target stance detection faces significant challenges due to the lack of additional background information in emerging knowledge domains and the colloquial nature of language patterns. Traditional stance detection methods often struggle with understanding limited context and have insufficient generalization across diverse sentiments and semantic structures. This paper focuses on effectively mining and utilizing sentiment-semantics knowledge for stance knowledge transfer and proposes a sentiment-aware hierarchical attention network (SentiHAN) for cross-target stance detection. SentiHAN introduces an improved hierarchical attention network designed to maximize the use of high-level representations of targets and texts at various… More >

    Graphic Abstract

    Cross-Target Stance Detection with Sentiments-Aware Hierarchical Attention Network

  • Open AccessOpen Access

    ARTICLE

    EfficientNetB1 Deep Learning Model for Microscopic Lung Cancer Lesion Detection and Classification Using Histopathological Images

    Rabia Javed1, Tanzila Saba2, Tahani Jaser Alahmadi3,*, Sarah Al-Otaibi4, Bayan AlGhofaily2, Amjad Rehman2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 809-825, 2024, DOI:10.32604/cmc.2024.052755 - 15 October 2024
    (This article belongs to the Special Issue: Medical Imaging Based Disease Diagnosis Using AI)
    Abstract Cancer poses a significant threat due to its aggressive nature, potential for widespread metastasis, and inherent heterogeneity, which often leads to resistance to chemotherapy. Lung cancer ranks among the most prevalent forms of cancer worldwide, affecting individuals of all genders. Timely and accurate lung cancer detection is critical for improving cancer patients’ treatment outcomes and survival rates. Screening examinations for lung cancer detection, however, frequently fall short of detecting small polyps and cancers. To address these limitations, computer-aided techniques for lung cancer detection prove to be invaluable resources for both healthcare practitioners and patients alike.… More >

  • Open AccessOpen Access

    ARTICLE

    Border Sensitive Knowledge Distillation for Rice Panicle Detection in UAV Images

    Anitha Ramachandran, Sendhil Kumar K.S.*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 827-842, 2024, DOI:10.32604/cmc.2024.054768 - 15 October 2024
    (This article belongs to the Special Issue: Multimodal Learning in Image Processing)
    Abstract Research on panicle detection is one of the most important aspects of paddy phenotypic analysis. A phenotyping method that uses unmanned aerial vehicles can be an excellent alternative to field-based methods. Nevertheless, it entails many other challenges, including different illuminations, panicle sizes, shape distortions, partial occlusions, and complex backgrounds. Object detection algorithms are directly affected by these factors. This work proposes a model for detecting panicles called Border Sensitive Knowledge Distillation (BSKD). It is designed to prioritize the preservation of knowledge in border areas through the use of feature distillation. Our feature-based knowledge distillation method More >

  • Open AccessOpen Access

    ARTICLE

    Dynamical Artificial Bee Colony for Energy-Efficient Unrelated Parallel Machine Scheduling with Additional Resources and Maintenance

    Yizhuo Zhu1, Shaosi He2, Deming Lei2,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 843-866, 2024, DOI:10.32604/cmc.2024.054473 - 15 October 2024
    (This article belongs to the Special Issue: Metaheuristic-Driven Optimization Algorithms: Methods and Applications)
    Abstract Unrelated parallel machine scheduling problem (UPMSP) is a typical scheduling one and UPMSP with various real-life constraints such as additional resources has been widely studied; however, UPMSP with additional resources, maintenance, and energy-related objectives is seldom investigated. The Artificial Bee Colony (ABC) algorithm has been successfully applied to various production scheduling problems and demonstrates potential search advantages in solving UPMSP with additional resources, among other factors. In this study, an energy-efficient UPMSP with additional resources and maintenance is considered. A dynamical artificial bee colony (DABC) algorithm is presented to minimize makespan and total energy consumption… More >

  • Open AccessOpen Access

    ARTICLE

    Leveraging EfficientNetB3 in a Deep Learning Framework for High-Accuracy MRI Tumor Classification

    Mahesh Thyluru Ramakrishna1, Kuppusamy Pothanaicker2, Padma Selvaraj3, Surbhi Bhatia Khan4,7,*, Vinoth Kumar Venkatesan5, Saeed Alzahrani6, Mohammad Alojail6
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 867-883, 2024, DOI:10.32604/cmc.2024.053563 - 15 October 2024
    (This article belongs to the Special Issue: Medical Imaging Based Disease Diagnosis Using AI)
    Abstract Brain tumor is a global issue due to which several people suffer, and its early diagnosis can help in the treatment in a more efficient manner. Identifying different types of brain tumors, including gliomas, meningiomas, pituitary tumors, as well as confirming the absence of tumors, poses a significant challenge using MRI images. Current approaches predominantly rely on traditional machine learning and basic deep learning methods for image classification. These methods often rely on manual feature extraction and basic convolutional neural networks (CNNs). The limitations include inadequate accuracy, poor generalization of new data, and limited ability… More >

  • Open AccessOpen Access

    ARTICLE

    ResMHA-Net: Enhancing Glioma Segmentation and Survival Prediction Using a Novel Deep Learning Framework

    Novsheena Rasool1,*, Javaid Iqbal Bhat1, Najib Ben Aoun2,3, Abdullah Alharthi4, Niyaz Ahmad Wani5, Vikram Chopra6, Muhammad Shahid Anwar7,*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 885-909, 2024, DOI:10.32604/cmc.2024.055900 - 15 October 2024
    (This article belongs to the Special Issue: Medical Imaging Based Disease Diagnosis Using AI)
    Abstract Gliomas are aggressive brain tumors known for their heterogeneity, unclear borders, and diverse locations on Magnetic Resonance Imaging (MRI) scans. These factors present significant challenges for MRI-based segmentation, a crucial step for effective treatment planning and monitoring of glioma progression. This study proposes a novel deep learning framework, ResNet Multi-Head Attention U-Net (ResMHA-Net), to address these challenges and enhance glioma segmentation accuracy. ResMHA-Net leverages the strengths of both residual blocks from the ResNet architecture and multi-head attention mechanisms. This powerful combination empowers the network to prioritize informative regions within the 3D MRI data and capture… More >

  • Open AccessOpen Access

    ARTICLE

    Efficient and Cost-Effective Vehicle Detection in Foggy Weather for Edge/Fog-Enabled Traffic Surveillance and Collision Avoidance Systems

    Naeem Raza1, Muhammad Asif Habib1, Mudassar Ahmad1, Qaisar Abbas2,*, Mutlaq B. Aldajani2, Muhammad Ahsan Latif3
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 911-931, 2024, DOI:10.32604/cmc.2024.055049 - 15 October 2024
    Abstract Vision-based vehicle detection in adverse weather conditions such as fog, haze, and mist is a challenging research area in the fields of autonomous vehicles, collision avoidance, and Internet of Things (IoT)-enabled edge/fog computing traffic surveillance and monitoring systems. Efficient and cost-effective vehicle detection at high accuracy and speed in foggy weather is essential to avoiding road traffic collisions in real-time. To evaluate vision-based vehicle detection performance in foggy weather conditions, state-of-the-art Vehicle Detection in Adverse Weather Nature (DAWN) and Foggy Driving (FD) datasets are self-annotated using the YOLO LABEL tool and customized to four vehicle… More >

  • Open AccessOpen Access

    ARTICLE

    Research on Defect Detection of Wind Turbine Blades Based on Morphology and Improved Otsu Algorithm Using Infrared Images

    Shuang Kang1, Yinchao He1,2, Wenwen Li1,*, Sen Liu2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 933-949, 2024, DOI:10.32604/cmc.2024.056614 - 15 October 2024
    Abstract To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades (WTB), this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm. First, mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image. The algorithm employs entropy as the objective function to guide the iteration process of image enhancement, selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations, effectively enhancing the detail features of defect… More >

  • Open AccessOpen Access

    ARTICLE

    LKMT: Linguistics Knowledge-Driven Multi-Task Neural Machine Translation for Urdu and English

    Muhammad Naeem Ul Hassan1,2, Zhengtao Yu1,2,*, Jian Wang1,2, Ying Li1,2, Shengxiang Gao1,2, Shuwan Yang1,2, Cunli Mao1,2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 951-969, 2024, DOI:10.32604/cmc.2024.054673 - 15 October 2024
    (This article belongs to the Special Issue: Advancements in Natural Language Processing (NLP) and Fuzzy Logic)
    Abstract Thanks to the strong representation capability of pre-trained language models, supervised machine translation models have achieved outstanding performance. However, the performances of these models drop sharply when the scale of the parallel training corpus is limited. Considering the pre-trained language model has a strong ability for monolingual representation, it is the key challenge for machine translation to construct the in-depth relationship between the source and target language by injecting the lexical and syntactic information into pre-trained language models. To alleviate the dependence on the parallel corpus, we propose a Linguistics Knowledge-Driven Multi-Task (LKMT) approach to… More >

  • Open AccessOpen Access

    ARTICLE

    Automatic Extraction of Medical Latent Variables from ECG Signals Utilizing a Mutual Information-Based Technique and Capsular Neural Networks for Arrhythmia Detection

    Abbas Ali Hassan, Fardin Abdali-Mohammadi*
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 971-983, 2024, DOI:10.32604/cmc.2024.053817 - 15 October 2024
    (This article belongs to the Special Issue: Emerging Trends and Applications of Deep Learning for Biomedical Signal and Image Processing)
    Abstract From a medical perspective, the 12 leads of the heart in an electrocardiogram (ECG) signal have functional dependencies with each other. Therefore, all these leads report different aspects of an arrhythmia. Their differences lie in the level of highlighting and displaying information about that arrhythmia. For example, although all leads show traces of atrial excitation, this function is more evident in lead II than in any other lead. In this article, a new model was proposed using ECG functional and structural dependencies between heart leads. In the prescreening stage, the ECG signals are segmented from… More >

  • Open AccessOpen Access

    ARTICLE

    A Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning for Offshore Wind Farm Scenarios

    Zeshuang Song1, Xiao Wang1,*, Qing Wu1, Yanting Tao1, Linghua Xu1, Yaohua Yin2, Jianguo Yan3
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 985-1008, 2024, DOI:10.32604/cmc.2024.055614 - 15 October 2024
    (This article belongs to the Special Issue: Collaborative Edge Intelligence and Its Emerging Applications)
    Abstract This research is the first application of Unmanned Aerial Vehicles (UAVs) equipped with Multi-access Edge Computing (MEC) servers to offshore wind farms, providing a new task offloading solution to address the challenge of scarce edge servers in offshore wind farms. The proposed strategy is to offload the computational tasks in this scenario to other MEC servers and compute them proportionally, which effectively reduces the computational pressure on local MEC servers when wind turbine data are abnormal. Finally, the task offloading problem is modeled as a multi-intelligent deep reinforcement learning problem, and a task offloading model… More >

  • Open AccessOpen Access

    ARTICLE

    Path Planning of Multi-Axis Robotic Arm Based on Improved RRT*

    Juanling Liang1, Wenguang Luo1,2,*, Yongxin Qin1
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1009-1027, 2024, DOI:10.32604/cmc.2024.055883 - 15 October 2024
    (This article belongs to the Special Issue: Intelligent Manufacturing, Robotics and Control Engineering)
    Abstract An improved RRT* algorithm, referred to as the AGP-RRT* algorithm, is proposed to address the problems of poor directionality, long generated paths, and slow convergence speed in multi-axis robotic arm path planning. First, an adaptive biased probabilistic sampling strategy is adopted to dynamically adjust the target deviation threshold and optimize the selection of random sampling points and the direction of generating new nodes in order to reduce the search space and improve the search efficiency. Second, a gravitationally adjustable step size strategy is used to guide the search process and dynamically adjust the step-size to… More >

  • Open AccessOpen Access

    ARTICLE

    Message Verification Protocol Based on Bilinear Pairings and Elliptic Curves for Enhanced Security in Vehicular Ad Hoc Networks

    Vincent Omollo Nyangaresi1,2, Arkan A. Ghaib3, Hend Muslim Jasim4, Zaid Ameen Abduljabbar4,5,6,*, Junchao Ma5,*, Mustafa A. Al Sibahee7,8, Abdulla J. Y. Aldarwish4, Ali Hasan Ali9,10, Husam A. Neamah11
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1029-1057, 2024, DOI:10.32604/cmc.2024.053854 - 15 October 2024
    Abstract Vehicular ad hoc networks (VANETs) provide intelligent navigation and efficient route management, resulting in time savings and cost reductions in the transportation sector. However, the exchange of beacons and messages over public channels among vehicles and roadside units renders these networks vulnerable to numerous attacks and privacy violations. To address these challenges, several privacy and security preservation protocols based on blockchain and public key cryptography have been proposed recently. However, most of these schemes are limited by a long execution time and massive communication costs, which make them inefficient for on-board units (OBUs). Additionally, some… More >

  • Open AccessOpen Access

    ARTICLE

    Optimization Model Proposal for Traffic Differentiation in Wireless Sensor Networks

    Adisa Hasković Džubur*, Samir Čaušević, Belma Memić, Muhamed Begović, Elma Avdagić-Golub, Alem Čolaković
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1059-1084, 2024, DOI:10.32604/cmc.2024.055386 - 15 October 2024
    Abstract Wireless sensor networks (WSNs) are characterized by heterogeneous traffic types (audio, video, data) and diverse application traffic requirements. This paper introduces three traffic classes following the defined model of heterogeneous traffic differentiation in WSNs. The requirements for each class regarding sensitivity to QoS (Quality of Service) parameters, such as loss, delay, and jitter, are described. These classes encompass real-time and delay-tolerant traffic. Given that QoS evaluation is a multi-criteria decision-making problem, we employed the AHP (Analytical Hierarchy Process) method for multi-criteria optimization. As a result of this approach, we derived weight values for different traffic… More >

  • Open AccessOpen Access

    ARTICLE

    Virtual Assembly Collision Detection Algorithm Using Backpropagation Neural Network

    Baowei Wang1,2,*, Wen You2
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1085-1100, 2024, DOI:10.32604/cmc.2024.055538 - 15 October 2024
    Abstract As computer graphics technology continues to advance, Collision Detection (CD) has emerged as a critical element in fields such as virtual reality, computer graphics, and interactive simulations. CD is indispensable for ensuring the fidelity of physical interactions and the realism of virtual environments, particularly within complex scenarios like virtual assembly, where both high precision and real-time responsiveness are imperative. Despite ongoing developments, current CD techniques often fall short in meeting these stringent requirements, resulting in inefficiencies and inaccuracies that impede the overall performance of virtual assembly systems. To address these limitations, this study introduces a… More >

  • Open AccessOpen Access

    ARTICLE

    An Aerial Target Recognition Algorithm Based on Self-Attention and LSTM

    Futai Liang1,2, Xin Chen1,*, Song He1, Zihao Song1, Hao Lu3
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1101-1121, 2024, DOI:10.32604/cmc.2024.055326 - 15 October 2024
    (This article belongs to the Special Issue: Artificial Neural Networks and its Applications)
    Abstract In the application of aerial target recognition, on the one hand, the recognition error produced by the single measurement of the sensor is relatively large due to the impact of noise. On the other hand, it is difficult to apply machine learning methods to improve the intelligence and recognition effect due to few or no actual measurement samples. Aiming at these problems, an aerial target recognition algorithm based on self-attention and Long Short-Term Memory Network (LSTM) is proposed. LSTM can effectively extract temporal dependencies. The attention mechanism calculates the weight of each input element and… More >

  • Open AccessOpen Access

    ARTICLE

    Reversible Data Hiding Algorithm in Encrypted Images Based on Adaptive Median Edge Detection and Ciphertext-Policy Attribute-Based Encryption

    Zongbao Jiang, Minqing Zhang*, Weina Dong, Chao Jiang, Fuqiang Di
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1123-1155, 2024, DOI:10.32604/cmc.2024.055120 - 15 October 2024
    Abstract With the rapid advancement of cloud computing technology, reversible data hiding algorithms in encrypted images (RDH-EI) have developed into an important field of study concentrated on safeguarding privacy in distributed cloud environments. However, existing algorithms often suffer from low embedding capacities and are inadequate for complex data access scenarios. To address these challenges, this paper proposes a novel reversible data hiding algorithm in encrypted images based on adaptive median edge detection (AMED) and ciphertext-policy attribute-based encryption (CP-ABE). This proposed algorithm enhances the conventional median edge detection (MED) by incorporating dynamic variables to improve pixel prediction… More >

  • Open AccessOpen Access

    ARTICLE

    Multi-Label Feature Selection Based on Improved Ant Colony Optimization Algorithm with Dynamic Redundancy and Label Dependence

    Ting Cai1, Chun Ye1, Zhiwei Ye1,*, Ziyuan Chen1, Mengqing Mei1, Haichao Zhang1, Wanfang Bai2, Peng Zhang3
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1157-1175, 2024, DOI:10.32604/cmc.2024.055080 - 15 October 2024
    (This article belongs to the Special Issue: Metaheuristic-Driven Optimization Algorithms: Methods and Applications)
    Abstract The world produces vast quantities of high-dimensional multi-semantic data. However, extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging. Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features. The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection, because of its simplicity, efficiency, and similarity to reinforcement learning. Nevertheless, existing methods do not consider crucial correlation information, such as dynamic redundancy and label correlation. To tackle these concerns, the paper proposes a More >

  • Open AccessOpen Access

    ARTICLE

    Stroke Electroencephalogram Data Synthesizing through Progressive Efficient Self-Attention Generative Adversarial Network

    Suzhe Wang*, Xueying Zhang, Fenglian Li, Zelin Wu
    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1177-1196, 2024, DOI:10.32604/cmc.2024.056016 - 15 October 2024
    Abstract Early and timely diagnosis of stroke is critical for effective treatment, and the electroencephalogram (EEG) offers a low-cost, non-invasive solution. However, the shortage of high-quality patient EEG data often hampers the accuracy of diagnostic classification methods based on deep learning. To address this issue, our study designed a deep data amplification model named Progressive Conditional Generative Adversarial Network with Efficient Approximating Self Attention (PCGAN-EASA), which incrementally improves the quality of generated EEG features. This network can yield full-scale, fine-grained EEG features from the low-scale, coarse ones. Specially, to overcome the limitations of traditional generative models… More >

Per Page:

Share Link