An iterated greedy algorithm with memory and learning mechanisms for the distributed permutation flow shop scheduling problem
--Supplementary Materials
This document provides the supplementary material for the article entitled “An iterated greedy algorithm with memory and learning mechanisms for the distributed permutation flow shop scheduling problem”, which has been submitted to the special issue of Computers, Materials & Continua, i.e., Recent Advances in Ensemble Framework of Meta-heuristics and Machine Learning: Methods and Applications.
1 Literature review
Table S1 gathers some outstanding literature of solving DPFSPs from the last decade, which is categorized according to the algorithm, learning, decision, local search and acceptance criterion. We only label acceptance criteria of the iterated greedy algorithm (IGA)-related literature. With respect to learning and decision, we only label the literature that uses reinforcement learning (RL) mechanisms. For ease of differentiation, IGA-related literature has been shaded in gray. Among these literature in Table S1, only Feng, Zhao, Jiang, Tao and Mei [1] considers the memory mechanism. Therefore, the information about the memory mechanism is not reflected in Table S1.
Table S1: Classification of some outstanding literature from the last decade
	Reference
	Algorithm
	Learning
	Decision
	Local search
	Acceptance

	[bookmark: bookmark2]Naderi and Ruiz (2010) [2]
	VNS
	
	
	Insr
	

	Naderi and Ruiz (2014) [3]
	SS
	
	
	Insr
	

	Wang and Wang (2015) [4]
	EDA, MA
	
	
	Insr, Swap, Revr
	

	Fernandez-Viagas and Framinan (2015) [5]
	IGA
	
	
	Insr
	SA

	Lin and Zhang (2016) [6]
	BBO
	
	
	Insr
	

	Lin and Ying (2016) [7]
	ICG
	
	
	Insr
	

	Bargaoui, Driss and Gh[image:]dira (2017) [8]
	CRO
	
	
	1p-CO
	

	Deng and Wang (2017) [9]
	MA
	
	
	Insr, Swap
	

	Lin, Wang and Li (2017) [10]
	BSA, HH
	
	
	Insr, Swap
	

	Shao, Pi and Shao (2017) [11]
	IGA
	
	
	Insr, Swap
	SA

	Fernandez-Viagas, Perez-Gonzales and Framinan (2018) [12]
	EA
	
	
	Insr
	

	Pan, Gao, Li and Framinan (2019) [13]
	IGA
	
	
	Insr
	SA

	Ruiz, Pan and Naderi (2019) [14]
	IGA
	
	
	Insr
	SA

	Wang and Wang (2019) [15]
	IGA
	
	
	Insr, Swap
	Greedy

	Meng, Pan and Wang (2019) [16]
	IGA, VND, ABC
	
	
	Insr, Swap
	SA

	Shao, Shao and Pi (2020) [17]
	IGA
	
	
	Insr, Swap
	SA

	Pan, Gao and Wang (2020) [18]
	EA
	
	
	Shift, Swap
	

	Huang, Pan and Gao (2020) [19]
	IGA
	
	
	B-Insr
	Greedy, Restart

	Zhao, Ma and Wang (2021) [20]
	Jaya
	
	
	Insr, Swap
	

	Li, Pan, Li, Gao and Tasgetiren (2021) [21]
	IGA
	
	
	Insr, Swap
	Greedy, Restart

	Shao, Shao and Pi (2021) [22]
	IGA
	
	
	Insr, Swap
	SA

	Mao, Pan, Miao and Gao (2021) [23]
	IGA
	
	
	Insr, Swap
	SA

	Zhang, Qian, Hu, Jin and Wang (2021) [24]
	EDA
	
	
	Insr, Swap, Revr
	

	Li, Li and Gao (2021) [25]
	ABC
	
	
	Insr, Swap
	

	Shao, Shao and Pi (2021) [26]
	EA
	
	
	Insr, Swap
	

	Li, Pan, Gao, Tasgetiren, Zhang and Li (2021) [27]
	GA
	
	
	Insr, Swap
	

	Chen, Pan, Gao and Sang (2021) [28]
	IGA
	
	
	Insr, Swap
	Greedy

	Huang, Pan, Huang, Suganthan and Gao (2021) [29]
	IGA
	
	
	Insr
	Greedy

	Zhao, Zhao, Wang and Tang (2021) [30] Zhao, Zhang, Cao and Tang (2021) [31] Yang and Li (2022) [32]
	BSA
WWO KDH
	
Q-learning*1
	
Opt
	Insr, Swap, B-Shift Insr, Swap, DC
Insr
	

	Li, Pan, He, Sang, Gao and Jing (2022) [33]
	IGA
	
	
	Insr
	SA

	Shao, Shao and Pi (2022) [34]
	NMA
	
	
	Insr, Swap
	

	Hou, Fu, Gao, Zhang and Sadollan (2022) [35]
	BSO
	
	
	Insr, Swap, CO
	

	Zhang, Liu, Wang, Yu and Xing (2022) [36]
	EA
	
	
	Insr, CO
	

	Zhao, Wang and Wang (2022) [37]
	ABC
	Q-learning*1
	Ls
	Insr, Swap, B-Insr, B-Swap
	

	Zhao, Jiang and Wang (2022) [38]
	MBO
	Q-learning*2
	Ls
	Insr, Swap, 2p-shuf, 2p-Revr
	

	Zhao, Zhou and Wang (2023) [39]
	SS
	Q-learning*1
	Ls
	Insr, Swap, B-Insr, B-Swap
	

	Shao, Shao and Pi (2023) [40]
	ILS
	
	
	Insr, Swap
	

	Yu, Gao, Ma and Pan (2023) [41]
	ABC, PSO, GA, Jaya
	Q-learning*1
	Ls
	Insr, Swap, DC
	

	Zhao, Zhou, Xu, Zhu and Jonrinaldi (2023) [42]
	SS
	Q-learning*1
	Opt
	Insr, Swap, B-Insr
	

	Zhao, Di and Wang (2023) [43]
	HH
	Q-learning*1
	Heu
	Insr, Swap
	

	Zhang, Qian, Hu and Yang (2023) [44]
	HH,EA
	Q-learning*1
	Heu
	Insr, Swap, 2p-Revr
	

	Jia, Yan and Wang (2023) [45]
	MA
	Q-learning*1
	Od
	Insr, Swap, CO
	

	Feng, Zhao, Jiang, Tao and Mei (2024) [1]
	IGA
	
	
	Insr
	Customized rules

	Han, Sang, Pan, Zhang and Guo (2024) [46]
	IGA
	
	
	Swap
	SA

	This work
	IGA
	Sarsa*2
	Opt,Ls,Od
	Insr, Swap
	Customized rules

Notations: Algorithm - VNS: Variable Neighborhood Search, SS: Scatter Search, EDA: Estimation of Distribution Algorithm, MA: Memetic Algorithm, IGA: Iterated Greedy Algorithm, BBO: Biogeography-based Optimization, ICG: Iterated Cocktail Greedy, CRO: Chemical Reaction Optimization, BSA: Backtracking Bearch Algorithm, HH: Hyper Heuristic, EA: Evolutionary Algorithm, VND: Variable Neighborhood Descent, ABC: Artificial Bee Colony, GA: Genetic Algorithm, WWO: Water Wave Optimization, KDH: Knowledge-driven Constructive Heuristic, NMA: Network MA, BSO: Brain Storm Optimization, MBO: Migrating birds Optimization, ILS: Iterated Local Search, PSO: Particle Swarm Optimization; Learning (Learning mechanism) - ’*n’: n RL algorithm(s) is(are) used; Decision (Action of the RL) - Opt: operators, Ls: local searches, Heu: heuristics, Od: other decisions; Local search - Insr: Insertion, Revr: Reverse, CO: Crossover, 1p-CO: 1-point CO, B-Insr: Block-based insertion, B-Swap: Block-based swap, 2p-shuf: 2-point shuffle, 2p-Revr: 2-point Reverse, B-Shift: Block-based shift, DC: Destruction-Construction; Acceptance: Geedy: Greedy Acceptance Criteria, Restart: Restart mechanisms, SA: Simulated Snnealing based Acceptance Criteria, Customized rules: Customized Acceptance Criteria.
2 The proposed approach
2.1 IGA
2.1.1 Representation and initialization procedure
For DPFSP, we use a very common representation of the solutions proposed by Naderi and Ruiz [2]. It is a set of lists, each of which is a sequence of jobs processed within a factory. Taking an example of an instance with 5 jobs and 2 factories, one possible expression of the solutions is [[2,3,5],[1,4]].
The initialization procedure consists of two steps: 1) Generate the initial solution using [14], as presented in Algorithm S1; 2) Perform local search, i.e., in Section 2.1.3, to improve the solution just obtained.
	Algorithm S1: Pseudo code of

	Output:
 sort all jobs according to their processing time in descending order

For to do

 // Remove the first job in
End
While do
 For to do
 Test job in all possible position of
 is the lowest obtained
 is the position where the lowest is obtained
 End

 Insert job in at position resulting in the lowest
 Extract at random job from position or from
 Test job in all possible positions of
 Insert job in at the position resulting in the lowest

End
Return

2.1.2 Perturbation
The perturbation consists of two steps: destruction and construction. We use the destruction employed by [14]. It randomly removes jobs from the critical factory (factory with the largest makespan) and the remaining jobs are randomly removed from the remaining factories, i.e., excluding the critical factory. As for the construction, we use the basic construction proposed by [47], which consumes less computation resources than the construction proposed by [14]. The procedure of the construction is that each job which is removed during the destruction is inserted into all possible positions in all factories of the partial solution and the best one with the smallest makespan is then the new partial solution.
2.1.3 Local search
The local search used in IGA (i.e.,) is proposed by [14], which considers factory assignment and job sequencing simultaneously. The detailed procedure is presented in Algorithm S2.
	Algorithm S2: Pseudo code of

	Input: //
Output:

 is a critical factory of

While do
 Randomly extract, without repetition, a job from position of
 For to do
 Test job in all positions of
 is the lowest obtained
 is the position where the lowest is obtained
 End

 If then
 Insert job to position of factory

 is a critical factory of

 Else
 Return job to position of

 End
End
Return

2.1.4 Acceptance
As for , our design is based on the following ideas, and it is detailed in Algorithm S3. Before the start of each episode, both and are set to 0, and is fixed to .
· As long as no worse solutions are accepted, increases until it is 1, which is controlled by step-size and .
· After the first acceptance () of a worse solution, the episode is not terminated as long as there are local improvements (i.e., is set to 0).
· After the second acceptance (), the episode is not terminated only if global improvements exist.
· Global improvements allow to be partly reset to the original state of the parameters (), but if worse solutions have already been accepted, is set to the state of the first acceptance ().
· Neither local nor global improvements can reset the .
	Algorithm S3: Pseudo code of

	Input: (New solutions), (Local solutions), (Global solutions), , , , ,
Output:
If then

 If then

 Elseif then

 End
 If then

 End
Elseif then

Else // Accept based on probability curve
 If then //

 Else // If not accept, increase probability

 End
End
Return

2.2 Memory mechanism
2.2.1 mixLS
The is detailed in Algorithm S4. In , the , decided by (), is used to control (based on [5]) or (based on [14]) to be used. And it is worth noting that starts by randomly extracting a job from all jobs, rather than just from critical factories. After the local search, only the factories involved undergo (based on [2]). Finally, only extracts part of jobs (, where is the number of perturbation operators in) in one call, and in it, each job is extracted randomly.
	Algorithm S4: Pseudo code of

	Input:
Output:

While do

 // Optimization between factories
 If then // Based on [5]
 Randomly extract a job from all jobs
 with any other possible jobs
 is the lowest obtained
 is the job where is obtained
 is a set of unduplicated factories where and are located
 If then

 End
 Elseif then // Based on [14]
 Randomly extract a job from critical factory
 Test in all possible positions of
 is the lowest obtained
 is a set of unduplicated factories where and are located
 If then

 End
 End
 // Optimization within factories
 For do // Based on [2]
 Randomly extract a job from factory
 Test in all possible positions of in factory
 is the lowest obtained
 is the position where is obtained
 If then

 End
 End
 If then

 Else

 End
End
Return

2.2.2 Acceptance of memory mechanism
As for , our design is based on the following ideas, and it is detailed in the Algorithm S5.
· Only if the best solution in outperforms the global solution, local/global solutions are updated simultaneously.
· If there is no global improvement, the local solution should avoid accepting the best solution in original (i.e., the just before).
	Algorithm S5: Pseudo code of

	Input:
Output:
If then

Else
 If then

 Else

 End
End
Return

2.3 Learning mechanism
2.3.1 Sarsa
The Q-value of Sarsa can be updated by (S1):
	
	(S1)

where represents the Q-value corresponding to action taken in state ; represents the immediate reward obtained by taking action in state ; is the expected Q-value of the action selected in state .
2.3.2 -greedy/decay
The -greedy strategy [48] is a good choice to make a balance between exploration and exploitation, as shown in (S2).
	
	(S2)

where is an action, is a state, is the actions for state , is the number of actions for state , is the probability of choosing action for state and . When , it becomes a greedy strategy and there is less exploration but more exploitation. When , it becomes a uniform distribution and there is more exploration but less exploitation. If there is a parameter that can reduce the value of throughout the search process, -greedy strategy becomes -decay, namely, . It is worth mentioning that we also reduce the value of throughout the search process, i.e., , based on the original -decay. The purpose of this design is to guide the algorithm from exploration to exploitation.
2.4 Complexity analysis of the developed MLIGA
The worst-case complexity of the proposed MLIGA is analyzed according to Algorithm 1. In the following, we provide the complexities of the functions involved in the algorithm:
Initialization: In the experiments performed in this work, the initial solution is generated using NEH2_en heuristic. As claimed in [14], its worst-case complexity is , in which is the number of jobs, is the number of machines, and is the number of factories.
: The complexity of the employed local search is .
: As shown in Algorithm S4, there are two optimization methods. In the first method, there are two possibilities: when is 0, the complexity is . When is 1, the complexity is . Therefore, the worst-case complexity of the first method is the maximum of them, i.e., . In the second method, the factorie(s) (up to two) affected in the last stage undergo a local search internally. Hence, its time complexity is . At last, these two methods will iterate times, in which is the number of actions in the first layer RL mechanism. Based on the discussion above, the complexity of is .
: The perturbation mechanism consists of two parts: destruction and construction, whose complexities are and [48], respectively. Note that is the action of the first layer RL mechanism.
: As shown in Algorithm 2, two solutions are selected by using the binary tournament strategy in one iteration, requiring computations. Since there are at most key factories, the worst-case complexity of the first operation is . Similarly, given that there are at most non-critical factories, the second operation’s complexity is . Thus, the complexity of is .
: Tournament selection requires computations, in which represents the number of solutions in original memory set . Due to is repeated times on two solutions, it requires , where is the index of in . Therefore, requires computations.
learning mechanism: The time complexities of both layers of RL are , since the only required operation is to find a maximum Q-value from a list of actions and the number of actions in them both are four. Compared to other parts, the on-line learning time added by learning mechanism is negligible in the total running time of MLIGA.
In summary, the time complexity of MLIGA is , where is the iterations’ number of steps 4-16 in Algorithm 1.
3 Experimental design
3.1 Experimental setting
[bookmark: _Hlk183120908]3.1.1 Benchmark
As for the standard benchmarks, we used the Large test instances and Calibration instances used by [14]. The details of these two instances are as follows:
· Large test instances: There are a total of 720 instances, divided into 6 groups according to the number of factories . Each group has 120 instances of Taillard ranging from 20 jobs and 5 machines to 500 jobs and 20 machines.
· Calibration instances: There are 50 different instances with , and values, which are randomly sampled from above 720 instances. And their processing times are randomly generated.
3.1.2 RPD
The relative percentage deviation (RPD) is calculated as (S3). And the ARPD is the mean value of RPD.
	
	(S1)

where refers to the obtained by an algorithm on an instance, and refers to the minimum value of obtained by all compared algorithms on the same instance.
3.1.3 Termination criterion
As for the termination criteria, we used the maximum number of fitness evaluations proposed by [15]. To determine the maximum number of fitness evaluations, we used the method proposed by [48]. All comparison algorithms were tested on each instance and terminated once there was no significant improvements (i.e., the improvements during the last 10% of the search process divided by the total improvements so far is less than 0.01). The maximum number of fitness evaluations among all comparison algorithms was considered as the termination criterion for all algorithms [48]. It is worth noting that, considering the different initialization procedures of the comparison algorithms and to maintain fairness, the number of fitness evaluations in this work referred to the statistics of the main part of the algorithms, i.e., the number of fitness evaluations in the initialization procedures was not considered.
3.2 Settings of ablation experiments
3.2.1 Initialization
 and are detailed in Algorithms S6 and S7, respectively. inserts jobs from a random sequence of all jobs into a random position in a random factory in sequence.
	Algorithm S6: Pseudo code of

	Output:
 sort all jobs according to their processing time in descending order

For to do

End
While do
 For to do
 Test job in all possible position of
 is the lowest obtained
 is the position where the lowest is obtained
 End

 Insert job in at position resulting in the lowest

End
Return

	Algorithm S7: Pseudo code of

	Output:
 a random sequence of all jobs

For to do

End
While do
 Insert to a random available position in a random factory

End
Return

3.2.2 Probability curve
Inspired by some existing curves, we designed three other probability curves, namely, , and , which are calculated by (S4)-(S6). Fig. S1 shows the difference between these four probability curves.
	
	(S4)

	
	(S5)

	
	(S6)

[image:]
Figure S1: Four probability curves
4 Numerical and statistical results
In this section, all the results were analyzed using the Analysis of Variance (ANOVA) technique and the Tukey test with 95% confidence intervals. Statistic indicators including DF, Adj SS, Adj MS, F-Value, and P-Value were obtained using the statistical software Minitab [49].
4.1 Calibration of MLIGA
In the calibration experiment, the results of analysis of variance are showed in Table S2. According to Table S2, the p-value is bigger than 0.050, which shows that there are no significant differences among these -values. In addition, for better discussion, Fig. S2 shows the mean ARPD values of these -values with Tukey’s Honest Significant Difference (HSD) 95% confidence intervals. Although the differences are not significant, there are some difference of mean ARPD values for these -values, which can be used to determine a specific value of . And for convenience in plotting, we use instead of .
Table S2: Result of analysis of variance
	Source
	DF
	Adj SS
	Adj MS
	F-Value
	P-Value

	
	20
	0.535
	0.02677
	0.18
	1.000

	Error
	1029
	150.193
	014596
	
	

[image:]
Figure S2: Means plots of all -values. All means have Tukey's Honest Significant Difference (HSD) 95% confidence intervals.
4.2 Effectiveness of MLIGA
In the comparison experiment of the four state-of-the-art comparison algorithms and the MLIGA, the results of analysis of variance are showed in Table S3 and Fig. S3. Fig. S3 shows that: 1) The overall performance of the MLIGA is better than DABC, DFFO, QFOA, and QIGA; 2) Given that QIGA utilizes a single-layer RL framework, the results can also indicate that the learning mechanism proposed in this paper is superior to the single-layer RL framework. 3) The mean ARPD value of MLIGA is a little lower than TSIGA and there is not a big difference. In addition, according to Table S3, the p-value is less than 0.050, which can only show that not all means are equal, i.e., there must be a significant difference between at least two algorithms. For further analysis, we plotted Fig. S4 to show the result of Tukey simultaneous tests for differences of means, and if an interval does not contain zero, the corresponding means are significantly different. Based on the rule, only the difference between MLIGA and TSIGA is not significant in Fig. S4. We analyzed this phenomenon in more depth in the main article and found that the MLIGA performed significantly better in large-scale instances than TSIGA.
Table S3: Result of analysis of variance
	Source
	DF
	Adj SS
	Adj MS
	F-Value
	P-Value

	
	20
	12722
	2544.43
	527.78
	0.000

	Error
	4314
	20798
	4.82
	
	

[image:]
Figure S3: Means plots for all algorithms. All means have Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.
[image:]
Figure S4: Results of Tukey simultaneous tests for diferences of means.
4.3 Ablation experiments
4.3.1 Initialization
The results of analysis of variance are displayed in Table S4, which is divided into two parts: 1) The statistics on the quality of the initial solutions of different initialization procedures; 2) The statistics on the quality of the best solutions obtained of different initialization procedures. Table S4 shows that there are significant differences between at least two initialization procedures on both parts.
Table S3: Result of analysis of variance
	Source
	DF
	Adj SS
	Adj MS
	F-Value
	P-Value

	For initial solutions

	Initialization procedures
	2
	101734
	50866.9
	2670.60
	0.000

	Error
	2157
	41084
	19.0
	
	

	For best solutions obtained

	Initialization procedures
	2
	26.75
	13.3731
	65.20
	0.000

	Error
	2157
	442.45
	0.2051
	
	

For further investigation, we plotted Fig. S5 about the initial solutions and Fig. S6 about the best solutions obtained. We can find that: 1) Compared to RandInit, NEH2_en and NEH2 can provide better initial solutions, but the difference between them is not significant; 2) The results of NEH2_en are best. However, the advantage of NEH2_en is not significant compared to NEH2; 3) Although the initial solutions generated by RandInit are poor, the best solutions obtained are not too bad. In summary, although the quality of the initial solutions affects the quality of the best solutions obtained, MLIGA does not rely much on the initial solutions, and due to the presence of forgetting in the memory mechanism, the worse initial solutions do not deteriorate MLIGA excessively.
[image:]
Figure S5: Means plots of all initialization procedures about initial solutions and results of Tukey simultaneous tests for diferences of means. All means have Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.
[image:]
Figure S6: Means plots of all initialization procedures about best solutions obtained and results of Tukey simultaneous tests for diferences of means. All means have Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.
4.3.2 Probability curve
As showed in Table S5, the differences among these probability curves are not significant. As shown in Fig. S7, is not sensitive to the choice of the probability curves, namely, has better robustness. Finally, although the differences are not significant, the has the smallest mean ARPD value, which indicates that it is still the best choice among the four curves.
Table S5: Result of analysis of variance
	Source
	DF
	Adj SS
	Adj MS
	F-Value
	P-Value

	Probability curves
	3
	0.058
	0.01820
	0.09
	0.967

	Error
	2876
	633.755
	0.22036
	
	

[image:]
Figure S7: Means plots of all probability curves and results of Tukey simultaneous tests for diferences of means. All means have Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.
4.3.3 Memory mechanism
As showed in Table S6, the difference between MLIGA and memoryless MLIGA is significant. According to Fig. S8, this conclusion is further confirmed and the MLIGA is much better than memoryless MLIGA, which is sufficient to show that the memory mechanism has an important impact on the performance of MLIGA and the design of memory mechanism is successful.
Table S5: Result of analysis of variance
	Source
	DF
	Adj SS
	Adj MS
	F-Value
	P-Value

	With/without memory
	1
	245.7
	245.666
	870.32
	0.000

	Error
	1438
	405.9
	0.282
	
	

[image:]
Figure S8: Means plots of the MLIGA with or without memory and results of Tukey simultaneous tests for diferences of means. All means have Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.
References
[1] X. Feng, F. Zhao, G. Jiang, T. Tao, and X. Mei, “A tabu memory based iterated greedy algorithm for the distributed heterogeneous permutation flowshop scheduling problem with the total tardiness criterion,” Expert Systems with Applications, p. 121790, 2023.
[2] B. Naderi and R. Ruiz, “The distributed permutation flowshop schedul- ing problem,” Computers & Operations Research, vol. 37, no. 4, pp. 754–768, 2010.
[3] B. Naderi and R. Ruiz, “A scatter search algorithm for the distributed permutation flowshop scheduling problem,” European Journal of Operational Research, vol. 239, no. 2, pp. 323–334, 2014.
[4] S.-Y. Wang and L. Wang, “An estimation of distribution algorithm-based memetic algorithm for the distributed assembly permutation flowshop scheduling problem,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 46, no. 1, pp. 139–149, 2015.
[5] V. Fernandez-Viagas and J. M. Framinan, “A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem,” International Journal of Production Research, vol. 53, no. 4, pp. 1111–1123, 2015.
[6] J. Lin and S. Zhang, “An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flowshop scheduling problem,” Computers & Industrial Engineering, vol. 97, pp. 128–136, 2016.
[7] S.-W. Lin and K.-C. Ying, “Minimizing makespan for solving the dis- tributed no-wait flowshop scheduling problem,” Computers & Industrial Engineering, vol. 99, pp. 202–209, 2016.
[8] H. Bargaoui, O. B. Driss, and K. Gh dira, “A novel chemical reaction optimization for the distributed permutation flowshop scheduling problem with makespan criterion,” Computers & Industrial Engineering, vol. 111, pp. 239–250, 2017.
[9] J. Deng and L. Wang, “A competitive memetic algorithm for multi-objective distributed permutation flow shop scheduling problem,” Swarm and evolutionary computation, vol. 32, pp. 121–131, 2017.
[10] J. Lin, Z.-J. Wang, and X. Li, “A backtracking search hyper-heuristic for the distributed assembly flowshop scheduling problem,” Swarm and evolutionary computation, vol. 36, pp. 124–135, 2017.
[11] W. Shao, D. Pi, and Z. Shao, “Optimization of makespan for the distributed no-wait flow shop scheduling problem with iterated greedy algorithms,” Knowledge-Based Systems, vol. 137, pp. 163–181, 2017.
[bookmark: bookmark20][12] V. Fernandez-Viagas, P. Perez-Gonzalez, and J. M. Framinan, “The distributed permutation flow shop to minimise the total flowtime,” Computers & Industrial Engineering, vol. 118, pp. 464–477, 2018.
[13] Q.-K. Pan, L. Gao, L. Xin-Yu, and F. M. Jose, “Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem,” Applied Soft Computing, vol. 81, p. 105492, 2019.
[14] R. Ruiz, Q.-K. Pan, and B. Naderi, “Iterated greedy methods for the distributed permutation flowshop scheduling problem,” Omega, vol. 83, pp. 213–222, 2019.
[15] J.-j. Wang and L. Wang, “An iterated greedy algorithm for distributed hybrid flowshop scheduling problem with total tardiness minimization,” in 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE), 2019, pp. 350–355.
[16] T. Meng, Q.-K. Pan, and L. Wang, “A distributed permutation flowshop scheduling problem with the customer order constraint,” Knowledge-Based Systems, vol. 184, p. 104894, 2019.
[17] Z. Shao, W. Shao, and D. Pi, “Effective heuristics and metaheuristics for the distributed fuzzy blocking flowshop scheduling problem,” Swarm and Evolutionary Computation, vol. 59, p. 100747, 2020.
[18] Q.-K. Pan, L. Gao, and L. Wang, “An effective cooperative co-evolutionary algorithm for distributed flowshop group scheduling problems,” IEEE Transactions on Cybernetics, vol. 52, no. 7, pp. 5999–6012, 2022.
[19] J.-P. Huang, Q.-K. Pan, and L. Gao, “An effective iterated greedy method for the distributed permutation flowshop scheduling problem with sequence-dependent setup times,” Swarm and Evolutionary Computation, vol. 59, p. 100742, 2020.
[20] F. Zhao, R. Ma, and L. Wang, “A self-learning discrete jaya algorithm for multiobjective energy-efficient distributed no-idle flowshop scheduling problem in heterogeneous factory system,” IEEE Transactions on Cybernetics, vol. 52, no. 12, pp. 12 675–12 686, 2021.
[21] Y.-Z. Li, Q.-K. Pan, J.-Q. Li, L. Gao, and M. F. Tasgetiren, “An adaptive iterated greedy algorithm for distributed mixed no-idle permutation flowshop scheduling problems,” Swarm and Evolutionary Computation, vol. 63, p. 100874, 2021.
[22] Z. Shao, W. Shao, and D. Pi, “Effective constructive heuristic and iterated greedy algorithm for distributed mixed blocking permutation flow-shop scheduling problem,” Knowledge-Based Systems, vol. 221, p. 106959, 2021.
[23] J.-y. Mao, Q.-k. Pan, Z.-h. Miao, and L. Gao, “An effective multi-start iterated greedy algorithm to minimize makespan for the distributed permutation flowshop scheduling problem with preventive maintenance,” Expert Systems with Applications, vol. 169, p. 114495, 2021.
[24] Z.-Q. Zhang, B. Qian, R. Hu, H.-P. Jin, and L. Wang, “A matrix-cube-based estimation of distribution algorithm for the distributed assembly permutation flow-shop scheduling problem,” Swarm and Evolutionary Computation, vol. 60, p. 100785, 2021.
[25] H. Li, X. Li, and L. Gao, “A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem,” Applied Soft Computing, vol. 100, p. 106946, 2021.
[26] W. Shao, Z. Shao, and D. Pi, “Multi-objective evolutionary algorithm based on multiple neighborhoods local search for multi-objective distributed hybrid flow shop scheduling problem,” Expert systems with applications, vol. 183, p. 115453, 2021.
[27] Y.-Z. Li, Q.-K. Pan, K.-Z. Gao, M. F. Tasgetiren, B. Zhang, and J.-Q. Li, “A green scheduling algorithm for the distributed flowshop problem,” Applied Soft Computing, vol. 109, p. 107526, 2021.
[28] S. Chen, Q.-K. Pan, L. Gao, and H. yan Sang, “A population-based iterated greedy algorithm to minimize total flowtime for the distributed blocking flowshop scheduling problem,” Engineering Applications of Artificial Intelligence, vol. 104, p. 104375, 2021.
[29] Y.-Y. Huang, Q.-K. Pan, J.-P. Huang, P. N. Suganthan, and L. Gao, “An improved iterated greedy algorithm for the distributed assembly permutation flowshop scheduling problem,” Computers & Industrial Engineering, vol. 152, p. 107021, 2021.
[30] F. Zhao, J. Zhao, L. Wang, and J. Tang, “An optimal block knowledge driven backtracking search algorithm for distributed assembly no-wait flowshop scheduling problem,” Applied Soft Computing, vol. 112, p. 107750, 2021.
[31] F. Zhao, L. Zhang, J. Cao, and J. Tang, “A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem,” Computers & Industrial Engineering, vol. 153, p. 107082, 2021.
[32] Y. Yang and X. Li, “A knowledge-driven constructive heuristic algorithm for the distributed assembly blocking flow shop scheduling problem,” Expert Systems with Applications, vol. 202, p. 117269, 2022.
[33] Y.-Z. Li, Q.-K. Pan, X. He, H.-Y. Sang, K.-Z. Gao, and X.-L. Jing, “The distributed flowshop scheduling problem with delivery dates and cumulative payoffs,” Computers & Industrial Engineering, vol. 165, p. 107961, 2022.
[34] W. Shao, Z. Shao, and D. Pi, “A network memetic algorithm for energy and labor-aware distributed heterogeneous hybrid flow shop scheduling problem,” Swarm and Evolutionary Computation, vol. 75, p. 101190, 2022.
[35] Y. Hou, Y. Fu, K. Gao, H. Zhang, and A. Sadollah, “Modelling and optimization of integrated distributed flow shop scheduling and distribution problems with time windows,” Expert Systems with Applications, vol. 187, p. 115827, 2022.
[36] G. Zhang, B. Liu, L. Wang, D. Yu, and K. Xing, “Distributed coevolutionary memetic algorithm for distributed hybrid differentiation flowshop scheduling problem,” IEEE Transactions on Evolutionary Computation, vol. 26, no. 5, pp. 1043–1057, 2022.
[37] F. Zhao, Z. Wang, and L. Wang, “A reinforcement learning driven artificial bee colony algorithm for distributed heterogeneous no-wait flowshop scheduling problem with sequence-dependent setup times,” IEEE Transactions on Automation Science and Engineering, 2022.
[38] F. Zhao, T. Jiang, and L. Wang, “A reinforcement learning driven cooperative meta-heuristic algorithm for energy-efficient distributed no-wait flowshop scheduling with sequence-dependent setup time,” IEEE Transactions on Industrial Informatics, 2022.
[39] F. Zhao, G. Zhou, and L. Wang, “A cooperative scatter search with reinforcement learning mechanism for the distributed permutation flowshop scheduling problem with sequence-dependent setup times,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023.
[40] W. Shao, Z. Shao, and D. Pi, “Modelling and optimization of distributed heterogeneous hybrid flow shop lot-streaming scheduling problem,” Expert Systems with Applications, vol. 214, p. 119151, 2023.
[41] H. Yu, K.-Z. Gao, Z.-F. Ma, and Y.-X. Pan, “Improved meta-heuristics with Q-learning for solving distributed assembly permutation flowshop scheduling problems,” Swarm and Evolutionary Computation, vol. 80, p. 101335, 2023.
[42] F. Zhao, G. Zhou, T. Xu, N. Zhu et al., “A knowledge-driven cooperative scatter search algorithm with reinforcement learning for the distributed blocking flow shop scheduling problem,” Expert Systems with Applications, vol. 230, p. 120571, 2023.
[43] F. Zhao, S. Di, and L. Wang, “A hyperheuristic with Q-learning for the multiobjective energy-efficient distributed blocking flow shop scheduling problem,” IEEE Transactions on Cybernetics, 2022.
[44] Z.-Q. Zhang, B. Qian, R. Hu, and J.-B. Yang, “Q-learning-based hyper-heuristic evolutionary algorithm for the distributed assembly blocking flowshop scheduling problem,” Applied Soft Computing, vol. 146, p. 110695, 2023.
[45] Y. Jia, Q. Yan, and H. Wang, “Q-learning driven multi-population memetic algorithm for distributed three-stage assembly hybrid flow shop scheduling with flexible preventive maintenance,” Expert Systems with Applications, vol. 232, p. 120837, 2023.
[46] Q.-Y. Han, H.-Y. Sang, Q.-K. Pan, B. Zhang, and H.-W. Guo, “An efficient collaborative multi-swap iterated greedy algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance,” Swarm and Evolutionary Computation, vol. 86, p. 101537, 2024.
[47] K.-C. Y. Shih-Wei Lin and C.-Y. Huang, “Minimising makespan in distributed permutation flowshops using a modified iterated greedy algorithm,” International Journal of Production Research, vol. 51, no. 16, pp. 5029–5038, 2013.
[48] M. Karimi-Mamaghan, M. Mohammadi, B. Pasdeloup, and P. Meyer, “Learning to select operators in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem,” European Journal of Operational Research, vol. 304, no. 3, pp. 1296–1330, 2023.
[49] A. Alin, “Minitab,” Wiley interdisciplinary reviews: computational statistics, vol. 2, no. 6, pp. 723–727, 2010.
image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image1.png

image2.png

image3.png

