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This document provides the supplementary material for the article entitled “An iterated greedy algorithm with memory and learning mechanisms for the distributed permutation flow shop scheduling problem”, which has been submitted to the special issue of Computers, Materials & Continua, i.e., Recent Advances in Ensemble Framework of Meta-heuristics and Machine Learning: Methods and Applications.
1 Literature review
Table S1 gathers some outstanding literature of solving DPFSPs from the last decade, which is categorized according to the algorithm, learning, decision, local search and acceptance criterion. We only label acceptance criteria of the iterated greedy algorithm (IGA)-related literature. With respect to learning and decision, we only label the literature that uses reinforcement learning (RL) mechanisms. For ease of differentiation, IGA-related literature has been shaded in gray. Among these literature in Table S1, only Feng, Zhao, Jiang, Tao and Mei [1] considers the memory mechanism. Therefore, the information about the memory mechanism is not reflected in Table S1.
Table S1: Classification of some outstanding literature from the last decade
	Reference
	Algorithm
	Learning
	Decision
	Local search
	Acceptance

	[bookmark: bookmark2]Naderi and Ruiz (2010) [2]
	VNS
	
	
	Insr
	

	Naderi and Ruiz (2014) [3]
	SS
	
	
	Insr
	

	Wang and Wang (2015) [4]
	EDA, MA
	
	
	Insr, Swap, Revr
	

	Fernandez-Viagas and Framinan (2015) [5]
	IGA
	
	
	Insr
	SA

	Lin and Zhang (2016) [6]
	BBO
	
	
	Insr
	

	Lin and Ying (2016) [7]
	ICG
	
	
	Insr
	

	Bargaoui, Driss and Gh[image: ]dira (2017) [8]
	CRO
	
	
	1p-CO
	

	Deng and Wang (2017) [9]
	MA
	
	
	Insr, Swap
	

	Lin, Wang and Li (2017) [10]
	BSA, HH
	
	
	Insr, Swap
	

	Shao, Pi and Shao (2017) [11]
	IGA
	
	
	Insr, Swap
	SA

	Fernandez-Viagas, Perez-Gonzales and Framinan (2018) [12]
	EA
	
	
	Insr
	

	Pan, Gao, Li and Framinan (2019) [13]
	IGA
	
	
	Insr
	SA

	Ruiz, Pan and Naderi (2019) [14]
	IGA
	
	
	Insr
	SA

	Wang and Wang (2019) [15]
	IGA
	
	
	Insr, Swap
	Greedy

	Meng, Pan and Wang (2019) [16]
	IGA, VND, ABC
	
	
	Insr, Swap
	SA

	Shao, Shao and Pi (2020) [17]
	IGA
	
	
	Insr, Swap
	SA

	Pan, Gao and Wang (2020) [18]
	EA
	
	
	Shift, Swap
	

	Huang, Pan and Gao (2020) [19]
	IGA
	
	
	B-Insr
	Greedy, Restart

	Zhao, Ma and Wang (2021) [20]
	Jaya
	
	
	Insr, Swap
	

	Li, Pan, Li, Gao and Tasgetiren (2021) [21]
	IGA
	
	
	Insr, Swap
	Greedy, Restart

	Shao, Shao and Pi (2021) [22]
	IGA
	
	
	Insr, Swap
	SA

	Mao, Pan, Miao and Gao (2021) [23]
	IGA
	
	
	Insr, Swap
	SA

	Zhang, Qian, Hu, Jin and Wang (2021) [24]
	EDA
	
	
	Insr, Swap, Revr
	

	Li, Li and Gao (2021) [25]
	ABC
	
	
	Insr, Swap
	

	Shao, Shao and Pi (2021) [26]
	EA
	
	
	Insr, Swap
	

	Li, Pan, Gao, Tasgetiren, Zhang and Li (2021) [27]
	GA
	
	
	Insr, Swap
	

	Chen, Pan, Gao and Sang (2021) [28]
	IGA
	
	
	Insr, Swap
	Greedy

	Huang, Pan, Huang, Suganthan and Gao (2021) [29]
	IGA
	
	
	Insr
	Greedy

	Zhao, Zhao, Wang and Tang (2021) [30] Zhao, Zhang, Cao and Tang (2021) [31]  Yang and Li (2022) [32]
	BSA
WWO KDH
	
Q-learning*1
	
Opt
	Insr, Swap, B-Shift Insr, Swap, DC
Insr
	

	Li, Pan, He, Sang, Gao and Jing (2022) [33]
	IGA
	
	
	Insr
	SA

	Shao, Shao and Pi (2022) [34]
	NMA
	
	
	Insr, Swap
	

	Hou, Fu, Gao, Zhang and Sadollan (2022) [35]
	BSO
	
	
	Insr, Swap, CO
	

	Zhang, Liu, Wang, Yu and Xing (2022) [36]
	EA
	
	
	Insr, CO
	

	Zhao, Wang and Wang (2022) [37]
	ABC
	Q-learning*1
	Ls
	Insr, Swap, B-Insr, B-Swap
	

	Zhao, Jiang and Wang (2022) [38]
	MBO
	Q-learning*2
	Ls
	Insr, Swap, 2p-shuf, 2p-Revr
	

	Zhao, Zhou and Wang (2023) [39]
	SS
	Q-learning*1
	Ls
	Insr, Swap, B-Insr, B-Swap
	

	Shao, Shao and Pi (2023) [40]
	ILS
	
	
	Insr, Swap
	

	Yu, Gao, Ma and Pan (2023) [41]
	ABC, PSO, GA, Jaya
	Q-learning*1
	Ls
	Insr, Swap, DC
	

	Zhao, Zhou, Xu, Zhu and Jonrinaldi (2023) [42]
	SS
	Q-learning*1
	Opt
	Insr, Swap, B-Insr
	

	Zhao, Di and Wang (2023) [43]
	HH
	Q-learning*1
	Heu
	Insr, Swap
	

	Zhang, Qian, Hu and Yang (2023) [44]
	HH,EA
	Q-learning*1
	Heu
	Insr, Swap, 2p-Revr
	

	Jia, Yan and Wang (2023) [45]
	MA
	Q-learning*1
	Od
	Insr, Swap, CO
	

	Feng, Zhao, Jiang, Tao and Mei (2024) [1]
	IGA
	
	
	Insr
	Customized rules

	Han, Sang, Pan, Zhang and Guo (2024) [46]
	IGA
	
	
	Swap
	SA

	This work
	IGA
	Sarsa*2
	Opt,Ls,Od
	Insr, Swap
	Customized rules


Notations: Algorithm - VNS: Variable Neighborhood Search, SS: Scatter Search, EDA: Estimation of Distribution Algorithm, MA: Memetic Algorithm, IGA: Iterated Greedy Algorithm, BBO: Biogeography-based Optimization, ICG: Iterated Cocktail Greedy, CRO: Chemical Reaction Optimization, BSA: Backtracking Bearch Algorithm, HH: Hyper Heuristic, EA: Evolutionary Algorithm, VND: Variable Neighborhood Descent, ABC: Artificial Bee Colony, GA: Genetic Algorithm, WWO: Water Wave Optimization, KDH: Knowledge-driven  Constructive Heuristic, NMA: Network MA, BSO: Brain  Storm  Optimization, MBO: Migrating birds  Optimization,  ILS: Iterated Local  Search,  PSO: Particle Swarm Optimization; Learning (Learning mechanism) - ’*n’: n RL algorithm(s) is(are) used; Decision (Action of the RL) - Opt: operators, Ls: local searches, Heu: heuristics, Od: other decisions; Local search - Insr: Insertion, Revr: Reverse, CO: Crossover, 1p-CO: 1-point CO, B-Insr: Block-based insertion, B-Swap: Block-based swap, 2p-shuf: 2-point shuffle, 2p-Revr: 2-point Reverse, B-Shift: Block-based shift, DC: Destruction-Construction; Acceptance: Geedy: Greedy Acceptance Criteria, Restart: Restart mechanisms, SA: Simulated Snnealing based Acceptance Criteria, Customized rules: Customized Acceptance Criteria.
2 The proposed approach
2.1 IGA
2.1.1 Representation and initialization procedure
For DPFSP, we use a very common representation of the solutions proposed by Naderi and Ruiz [2]. It is a set of  lists, each of which is a sequence of jobs processed within a factory. Taking an example of an instance with 5 jobs and 2 factories, one possible expression of the solutions is [[2,3,5],[1,4]].
The initialization procedure consists of two steps: 1) Generate the initial solution using  [14], as presented in Algorithm S1; 2) Perform local search, i.e.,  in Section 2.1.3, to improve the solution just obtained.
	Algorithm S1: Pseudo code of 

	Output: 
 sort all jobs according to their processing time in descending order
 
For  to  do
   
   
    // Remove the first job in 
End
While  do
   For  to  do
      Test job  in all possible position of 
       is the lowest  obtained
       is the position where the lowest  is obtained
   End
    
   Insert job  in  at position  resulting in the lowest 
   Extract at random job  from position  or  from 
   Test job  in all possible positions of 
   Insert job  in  at the position resulting in the lowest 
    
End
Return 


2.1.2 Perturbation
The perturbation consists of two steps: destruction and construction. We use the destruction employed by [14]. It randomly removes  jobs from the critical factory (factory with the largest makespan) and the remaining  jobs are randomly removed from the remaining  factories, i.e., excluding the critical factory. As for the construction, we use the basic construction proposed by [47], which consumes less computation resources than the construction proposed by [14]. The procedure of the construction is that each job which is removed during the destruction is inserted into all possible positions in all factories of the partial solution and the best one with the smallest makespan is then the new partial solution.
2.1.3 Local search
The local search used in IGA (i.e., ) is  proposed by [14], which considers factory assignment and job sequencing simultaneously. The detailed procedure is presented in Algorithm S2.
	Algorithm S2: Pseudo code of 

	Input:  // 
Output: 
 
 is a critical factory of 
 
While  do
   Randomly extract, without repetition, a job  from position  of 
   For  to  do
      Test job  in all positions of 
       is the lowest  obtained
       is the position where the lowest  is obtained
   End
   
   If  then
      Insert job  to position  of factory 
      
       is a critical factory of 
      
   Else 
      Return job  to position  of 
      
   End
End
Return 


2.1.4 Acceptance
As for , our design is based on the following ideas, and it is detailed in Algorithm S3. Before the start of each episode, both  and  are set to 0, and  is fixed to .
· As long as no worse solutions are accepted,  increases until it is 1, which is controlled by step-size  and .
· After the first acceptance () of a worse solution, the episode is not terminated as long as there are local improvements (i.e.,  is set to 0).
· After the second acceptance (), the episode is not terminated only if global improvements exist.
· Global improvements allow  to be partly reset to the original state of the parameters (), but if worse solutions have already been accepted,  is set to the state of the first acceptance ().
· Neither local nor global improvements can reset the .
	Algorithm S3: Pseudo code of 

	Input: (New solutions), (Local solutions), (Global solutions), , , , , 
Output: 
If  then
   
   If  then
      
   Elseif  then
      
   End
   If  then
      
      
   End
Elseif  then
   
Else // Accept based on probability curve
   If  then // 
      
      
   Else // If not accept, increase probability
      
   End
End
Return 


2.2 Memory mechanism
2.2.1 mixLS
The  is detailed in Algorithm S4. In , the , decided by  (), is used to control  (based on [5]) or  (based on [14]) to be used. And it is worth noting that  starts by randomly extracting a job from all jobs, rather than just from critical factories. After the local search, only the factories involved undergo  (based on [2]). Finally,  only extracts part of jobs (, where  is the number of perturbation operators in ) in one call, and in it, each job is extracted randomly.
	Algorithm S4: Pseudo code of 

	Input: 
Output: 
 
 
While  do
   
   // Optimization between factories
   If  then // Based on  [5]
      Randomly extract a job  from all jobs
        with any other possible jobs
       is the lowest  obtained
       is the job where  is obtained
       is a set of unduplicated factories where  and  are located
      If  then
         
      End 
   Elseif  then // Based on  [14]
      Randomly extract a job  from critical factory
      Test  in all possible positions of 
       is the lowest  obtained
       is a set of unduplicated factories where  and  are located
      If  then
         
      End
   End
   // Optimization within factories
   For  do // Based on  [2]
      Randomly extract a job  from factory 
      Test  in all possible positions of  in factory 
       is the lowest  obtained
       is the position where  is obtained
      If  then
         
      End
   End
   If  then
      
   Else
      
   End
End
Return 


2.2.2 Acceptance of memory mechanism
As for , our design is based on the following ideas, and it is detailed in the Algorithm S5.
· Only if the best solution in  outperforms the global solution, local/global solutions are updated simultaneously.
· If there is no global improvement, the local solution should avoid accepting the best solution in original  (i.e., the  just before ).
	Algorithm S5: Pseudo code of 

	Input: 
Output: 
If  then
   
   
Else
   If  then
      
   Else
      
   End
End
Return 


2.3 Learning mechanism
2.3.1 Sarsa
The Q-value of Sarsa can be updated by (S1):
	 
	(S1)


where  represents the Q-value corresponding to action  taken in state ;  represents the immediate reward obtained by taking action  in state ;  is the expected Q-value of the action  selected in state .
2.3.2 -greedy/decay
The -greedy strategy [48] is a good choice to make a balance between exploration and exploitation, as shown in (S2).
	 
	(S2)


where  is an action,  is a state,  is the actions for state ,  is the number of actions for state ,  is the probability of choosing action  for state  and . When , it becomes a greedy strategy and there is less exploration but more exploitation. When , it becomes a uniform distribution and there is more exploration but less exploitation. If there is a parameter  that can reduce the value of  throughout the search process, -greedy strategy becomes -decay, namely, . It is worth mentioning that we also reduce the value of  throughout the search process, i.e., , based on the original -decay. The purpose of this design is to guide the algorithm from exploration to exploitation.
2.4 Complexity analysis of the developed MLIGA
The worst-case complexity of the proposed MLIGA is analyzed according to Algorithm 1. In the following, we provide the complexities of the functions involved in the algorithm:
Initialization: In the experiments performed in this work, the initial solution is generated using NEH2_en heuristic. As claimed in [14], its worst-case complexity is , in which  is the number of jobs,  is the number of machines, and  is the number of factories.
: The complexity of the employed local search is .
: As shown in Algorithm S4, there are two optimization methods. In the first method, there are two possibilities: when  is 0, the complexity is . When  is 1, the complexity is . Therefore, the worst-case complexity of the first method is the maximum of them, i.e., . In the second method, the factorie(s) (up to two) affected in the last stage undergo a local search internally. Hence, its time complexity is . At last, these two methods will iterate  times, in which  is the number of actions in the first layer RL mechanism. Based on the discussion above, the complexity of  is .
: The perturbation mechanism consists of two parts: destruction and construction, whose complexities are  and  [48], respectively. Note that  is the action of the first layer RL mechanism.
: As shown in Algorithm 2, two solutions are selected by using the binary tournament strategy in one iteration, requiring  computations. Since there are at most  key factories, the worst-case complexity of the first  operation is . Similarly, given that there are at most  non-critical factories, the second  operation’s complexity is . Thus, the complexity of  is .
: Tournament selection requires  computations, in which  represents the number of solutions in original memory set . Due to  is repeated  times on two solutions, it requires , where  is the index of  in . Therefore,  requires  computations.
learning mechanism: The time complexities of both layers of RL are , since the only required operation is to find a maximum Q-value from a list of actions and the number of actions in them both are four. Compared to other parts, the on-line learning time added by learning mechanism is negligible in the total running time of MLIGA.
In summary, the time complexity of MLIGA is , where  is the iterations’ number of steps 4-16 in Algorithm 1.
3 Experimental design
3.1 Experimental setting
[bookmark: _Hlk183120908]3.1.1 Benchmark
As for the standard benchmarks, we used the Large test instances and Calibration instances used by [14]. The details of these two instances are as follows:
· Large test instances: There are a total of 720 instances, divided into 6 groups according to the number of factories . Each group has 120 instances of Taillard ranging from 20 jobs and 5 machines to 500 jobs and 20 machines.
· Calibration instances: There are 50 different instances with ,  and  values, which are randomly sampled from above 720 instances. And their processing times are randomly generated.
3.1.2 RPD
The relative percentage deviation (RPD) is calculated as (S3). And the ARPD is the mean value of RPD.
	 
	(S1)


where  refers to the  obtained by an algorithm on an instance, and  refers to the minimum value of  obtained by all compared algorithms on the same instance.
3.1.3 Termination criterion
As for the termination criteria, we used the maximum number of fitness evaluations proposed by [15]. To determine the maximum number of fitness evaluations, we used the method proposed by [48]. All comparison algorithms were tested on each instance and terminated once there was no significant improvements (i.e., the improvements during the last 10% of the search process divided by the total improvements so far is less than 0.01). The maximum number of fitness evaluations among all comparison algorithms was considered as the termination criterion for all algorithms [48]. It is worth noting that, considering the different initialization procedures of the comparison algorithms and to maintain fairness, the number of fitness evaluations in this work referred to the statistics of the main part of the algorithms, i.e., the number of fitness evaluations in the initialization procedures was not considered.
3.2 Settings of ablation experiments
3.2.1 Initialization
 and  are detailed in Algorithms S6 and S7, respectively.  inserts jobs from a random sequence of all jobs into a random position in a random factory in sequence.
	Algorithm S6: Pseudo code of 

	Output: 
 sort all jobs according to their processing time in descending order
 
For  to  do
   
   
   
End
While  do
   For  to  do
      Test job  in all possible position of 
       is the lowest  obtained
       is the position where the lowest  is obtained
   End
    
   Insert job  in  at position  resulting in the lowest 
    
End
Return 



	Algorithm S7: Pseudo code of 

	Output: 
 a random sequence of all jobs
 
For  to  do
   
   
   
End
While  do
   Insert  to a random available position in a random factory
   
End
Return 


3.2.2 Probability curve
Inspired by some existing curves, we designed three other probability curves, namely, ,  and , which are calculated by (S4)-(S6). Fig. S1 shows the difference between these four probability curves.
	 
	(S4)

	 
	(S5)

	 
	(S6)


[image: ]
Figure S1: Four probability curves
4 Numerical and statistical results
In this section, all the results were analyzed using the Analysis of Variance (ANOVA) technique and the Tukey test with 95% confidence intervals. Statistic indicators including DF, Adj SS, Adj MS, F-Value, and P-Value were obtained using the statistical software Minitab [49].
4.1 Calibration of MLIGA
In the calibration experiment, the results of analysis of variance are showed in Table S2. According to Table S2, the p-value is bigger than 0.050, which shows that there are no significant differences among these -values. In addition, for better discussion, Fig. S2 shows the mean ARPD values of these -values with Tukey’s Honest Significant Difference (HSD) 95% confidence intervals. Although the differences are not significant, there are some difference of mean ARPD values for these -values, which can be used to determine a specific value of . And for convenience in plotting, we use  instead of .
Table S2: Result of analysis of variance
	Source
	DF
	Adj SS
	Adj MS
	F-Value
	P-Value

	
	20
	0.535
	0.02677
	0.18
	1.000

	Error
	1029
	150.193
	014596
	
	


[image: ]
Figure S2: Means plots of all -values. All means have Tukey's Honest Significant Difference (HSD) 95% confidence intervals.
4.2 Effectiveness of MLIGA
In the comparison experiment of the four state-of-the-art comparison algorithms and the MLIGA, the results of analysis of variance are showed in Table S3 and Fig. S3. Fig. S3 shows that: 1) The overall performance of the MLIGA is better than DABC, DFFO, QFOA, and QIGA; 2) Given that QIGA utilizes a single-layer RL framework, the results can also indicate that the learning mechanism proposed in this paper is superior to the single-layer RL framework. 3) The mean ARPD value of MLIGA is a little lower than TSIGA and there is not a big difference. In addition, according to Table S3, the p-value is less than 0.050, which can only show that not all means are equal, i.e., there must be a significant difference between at least two algorithms. For further analysis, we plotted Fig. S4 to show the result of Tukey simultaneous tests for differences of means, and if an interval does not contain zero, the corresponding means are significantly different. Based on the rule, only the difference between MLIGA and TSIGA is not significant in Fig. S4. We analyzed this phenomenon in more depth in the main article and found that the MLIGA performed significantly better in large-scale instances than TSIGA.
Table S3: Result of analysis of variance
	Source
	DF
	Adj SS
	Adj MS
	F-Value
	P-Value

	
	20
	12722
	2544.43
	527.78
	0.000

	Error
	4314
	20798
	4.82
	
	


[image: ]
Figure S3: Means plots for all algorithms. All means have Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.
[image: ]
Figure S4: Results of Tukey simultaneous tests for diferences of means.
4.3 Ablation experiments
4.3.1 Initialization
The results of analysis of variance are displayed in Table S4, which is divided into two parts: 1) The statistics on the quality of the initial solutions of different initialization procedures; 2) The statistics on the quality of the best solutions obtained of different initialization procedures. Table S4 shows that there are significant differences between at least two initialization procedures on both parts.
Table S3: Result of analysis of variance
	Source
	DF
	Adj SS
	Adj MS
	F-Value
	P-Value

	For initial solutions

	Initialization procedures
	2
	101734
	50866.9
	2670.60
	0.000

	Error
	2157
	41084
	19.0
	
	

	For best solutions obtained

	Initialization procedures
	2
	26.75
	13.3731
	65.20
	0.000

	Error
	2157
	442.45
	0.2051
	
	


For further investigation, we plotted Fig. S5 about the initial solutions and Fig. S6 about the best solutions obtained. We can find that: 1) Compared to RandInit, NEH2_en and NEH2 can provide better initial solutions, but the difference between them is not significant; 2) The results of NEH2_en are best. However, the advantage of NEH2_en is not significant compared to NEH2; 3) Although the initial solutions generated by RandInit are poor, the best solutions obtained are not too bad. In summary, although the quality of the initial solutions affects the quality of the best solutions obtained, MLIGA does not rely much on the initial solutions, and due to the presence of forgetting in the memory mechanism, the worse initial solutions do not deteriorate MLIGA excessively.
[image: ]
Figure S5: Means plots of all initialization procedures about initial solutions and results of Tukey simultaneous tests for diferences of means. All means have Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.
[image: ]
Figure S6: Means plots of all initialization procedures about best solutions obtained and results of Tukey simultaneous tests for diferences of means. All means have Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.
4.3.2 Probability curve
As showed in Table S5, the differences among these probability curves are not significant. As shown in Fig. S7,  is not sensitive to the choice of the probability curves, namely,  has better robustness. Finally, although the differences are not significant, the  has the smallest mean ARPD value, which indicates that it is still the best choice among the four curves.
Table S5: Result of analysis of variance
	Source
	DF
	Adj SS
	Adj MS
	F-Value
	P-Value

	Probability curves
	3
	0.058
	0.01820
	0.09
	0.967

	Error
	2876
	633.755
	0.22036
	
	


[image: ]
Figure S7: Means plots of all probability curves and results of Tukey simultaneous tests for diferences of means. All means have Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.
4.3.3 Memory mechanism
As showed in Table S6, the difference between MLIGA and memoryless MLIGA is significant. According to Fig. S8, this conclusion is further confirmed and the MLIGA is much better than memoryless MLIGA, which is sufficient to show that the memory mechanism has an important impact on the performance of MLIGA and the design of memory mechanism is successful.
Table S5: Result of analysis of variance
	Source
	DF
	Adj SS
	Adj MS
	F-Value
	P-Value

	With/without memory
	1
	245.7
	245.666
	870.32
	0.000

	Error
	1438
	405.9
	0.282
	
	


[image: ]
Figure S8: Means plots of the MLIGA with or without memory and results of Tukey simultaneous tests for diferences of means. All means have Tukey’s Honest Significant Difference (HSD) 95% confidence intervals.
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