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ABSTRACT

We study nonhomogeneous systems of linear conformable fractional differential equations with pure delay. By
using new conformable delayed matrix functions and the method of variation, we obtain a representation of their
solutions. As an application, we derive a finite time stability result using the representation of solutions and a norm
estimation of the conformable delayed matrix functions. The obtained results are new, and they extend and improve
some existing ones. Finally, an example is presented to illustrate the validity of our theoretical results.
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1 Introduction

In recent years, particularly in 2014, Khalil et al. [1] introduced a new definition of the fractional
derivative called the conformable fractional derivative that extends the classical limit definition of the
derivative of a function. The conformable fractional derivative has main advantages compared with
other previous definitions. It can, for example, be used to solve the differential equations and systems
exactly and numerically easily and efficiently, it satisfies the product rule and quotient rule, it has
results similar to known theorems in classical calculus, and applications for conformable differential
equations in a variety of fields have been extensively studied, see [2-10] and the references therein.
On the other hand, in 2003, Khusainov et al. [1 1] represented the solutions of linear delay differential
equations by constructing a new concept of a delayed exponential matrix function. In 2008, Khusainov
et al. [12] adopted this approach to represent the solutions of an oscillating system with pure delay
by establishing a delayed matrix sine and a delayed matrix cosine. This pioneering research yielded
plenty of novel results on the representation of solutions, which are applied in the stability analysis and
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control problems of time-delay systems; see for example [13-28] and the references therein. Thereafter,
in 2021, Xiao et al. [29] obtained the exact solutions of linear conformable fractional delay differential
equations of order @ € (0, 1] by constructing a new conformable delayed exponential matrix function.

However, to the best of our knowledge, no study exists dealing with the representation and stability
of solutions of conformable fractional delay differential systems of order « € (1, 2].

Motivated by these papers, we consider the explicit formula of solutions of linear conformable
fractional differential equations with pure delay

(’Db)(x):—By(x—t)—kf(x), forx >0,7 >0, 1
Yy =y (x),yx =y (x) for-t <x=0, (1)

by constructing new conformable delayed matrix functions. Moreover, the representation of solutions
of Eq. (1) is used to obtain a finite time stability result on W = [0, L], L > 0, where D is called
the conformable fractional derivative of order « € (1,2] with lower index zero, y (x) € R", ¢ €
C*([—7,0],R"), B € R™" is a constant nonzero matrix and ' € C ([0, c0) ,R") is a given function.

The paper is organized as follows: In Section 2, we present some basic definitions concerning
conformable fractional derivative and finite time stability, and construct new conformable delayed
matrix functions and derive their properties for use when we discuss the representation of solutions
and finite time stability. In Section 3, by using the new conformable delayed matrix functions, we give
the explicit formula of solutions of Eq. (1). In Section 4, as an application, we derive a finite time
stability result using the representation of solutions. Finally, we give an example to illustrate the main
results.

2 Preliminaries

Throughout the paper, we denote the vector norm and matrix norm, respectively, as ||yl = >__, |yl

n
and ||B|| = max,, >

b,»j|; v and b; are the elements of the vector y and the matrix B, respectively.

i=1
Denote C (W,R") the Banach space of vector-value continuous function from W — R” endowed
with the norm |y||. = max.. ||y (x)|| for a norm |-|| on R". We introduce a space C' (W,R") =
{ye C(W,R") :y € C(W,R"}. Furthermore, we see ||/ || = maX,q_.q ¥ (V)]

We recall some basic definitions of conformable fractional derivative, fractional exponential
function, and finite time stability.

Definition 2.1. ([2, Definition 2.2]). Let f : [, c0) — R” be a differentiable function at x. Then the
conformable fractional derivative for f of order @ = (1, 2] is given by
[ x+ex-a™) /@)
, X>a

&

() (x) = lim
if the limit exists.

Remark 2.1. As a consequence of Definition 2.1, we can show that

D) (x) = (x—a) " (x),

where o = (1, 2], and f is 2-differentiable at x > a.
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Definition 2.2. ([2]). We define the fractional exponential function as follows:

(x —a)" = A (x — a)™
):;Tk!, a>0,)»GR.
Definition 2.3. ([30]). The system in Eq. (1) is finite time stable with respect to {0, W, 1,8, 8},8 < B
if and only if n < § implies ||y (x)|| < g for all x € W, where n = max {|¥ll, ¥l c. IVl .} and 8, B

are real positive numbers.

E,(A,x —a) =exp (k.

o

Next, we construct new conformable delayed matrix functions that are the fundamental solution
matrices of Eq. (1).

Definition 2.4. The conformable delayed matrix functions H., (Bx*) and M., (Bx*) are defined

as:
o, —00 < X < —T,
I, —T7<x<0,
1
X, 0<x<r,
a(a—1)
M., (Bx") = . 1 ' 2)
) _ B o B2 _ 2a
c@-Dn" Plr D o TR
4 (=) B” _ (x—(m-1)7)",
mlom ] (ie — 1)
i=1
(m—1)7 <x <mr,
®’ X< X< —T,
I(x+1), -1 <x<0,
1
I — B yetl 0<
(x+ 1) @t =x=<1
M., (Bx*) = . 1 1 | 3
1 I _ B atl B2 o 20+1
P T +1 @+ hat " 7
+o (=D)"B” — (x—(m—1o)"™",
m!am [ (i + 1)
i=1
(m—-17<x<mr,

respectively, where m = 0, 1,2, ..., I is the n x n identity matrix and © is the n x n null matrix.

Lemma 2.1. The following rule is true:
QSH/L& (Bxa) = _BHh,oz (B(x - h)a) .

Proof . First, when x € (—o0, —71), we obtain H,, (Bx*) = H., (B(x — 1)°) = O, and we can see
that Lemma 2.1 holds. Following that,set m — )t < x <mt,m=0,1,2,..., we get



(x . _C)Zm

1 1
Ba =I_B—a B2
H.. (Bx*) a(a—l)x+ Qa2 (e —1)QRa—1)

+ -4 (_1)’”3’"

x—(m-—11)"™.

m

mla” [] (i — 1)
i=1
Applying Remark 2.1, we get
Do H. . (Bx*)
;1 —D; | B : |+ | B ! ( )
= — —X X—t
0 "1 Ta(@—1) ’ Qa2 (a—1)QCa—1)
+ - _|_ Qfmfl)r (_l)mBm — (x _ (m _ 1) _[)mot
mla” [] (fe — 1)
i=1
:@—B+B2;(x—r)“—B3 ! (x —27)™*
a(x—1) Qa2 (@ —1)2a—1)

1

+ o + (_l)mBm m—1 (’x - (m - 1) T)(Wl—l)Dt
(m—1'ta " ] (i — 1)

__B[I—B;( —_ )m—f—B2 1 ( _2)2a

- d@—n "t N @—DQu—D

1
m—1

(m—1'ta ' ] (e — 1)

+ . + (—I)HFIBM71 (x _ (m - 1) ‘L_)(mfl)a

= —BH., (B(x —1)").

This completes the proof.
In the same way that we proved Lemma 2.1, we can derive the next result.

Lemma 2.2. The following rule is true:
Qth,a (Bxﬂt) = _BMh.ot (B(x - h)“) .
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To conclude this section, we provide a norm estimation of the conformable delayed matrix

functions, which is used while discussing finite time stability.

Lemma 2.3. Forany x € [(m — 1) t,mt],m=0,1,2, ..., we have

[#... (Bx)| < E. (@'l x) .

o



CMES, 2022

Proof . Taking the norm of Eq. (2), we get

X (x —1)™
Heo (BX)| <1+ ||B]| ——— + ||BII’
[Hew Bx| < Bl e P S e T e =T
Sx=m-=D)™
+ -+ B
mla” [] (i — 1)
i=1
<14 B — B
- a(a—1) 2Qo(a — 1)
Bl —
B
- B||*x* B
52 I IIk =Ea(” II’X)'
~ (a — 1)'a*k! a—1
This completes the proof.
Lemma 2.4. For any x € [(m — 1) t,mt],m=0,1,2,..., we have
[M.o Bx)|| < (x+1)E, ( ”+”1,x+r).
Proof . Taking the norm of Eq. (3), we get
| < (0t )+ 1Bl —— !
i - a(a+1)
1
+ || BII? (x — )"

(e +1)QCa+1)

+ . + ”B”m (x _ (m _ 1) ‘L_)ma-H

m

mla” [] (e + 1)

i=1

(X+T)a+l ) (X+T)2a+1

<(x+7)+ Bl ——— + Bl =———

0+ 1By T IB
(x_i_r)moz+l

+---+ B ——
B T T

IB]* (x + )" Bl
E,|—— .
—Z Raaryy  C RGO
This completes the proof.

3 Exact Solutions for Linear Conformable Fractional Delay Systems

In this section, we give the exact solutions of Eq. (1) via the conformable delayed matrix functions
and the method of variation of constants. To do this, we consider the homogeneous system of linear
conformable fractional delay differential equations
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(@f)’y) x)=—-By(x—r1), for x>0,7 >0,

YO =Y. @ =Y @ for —t<x<0, @
and the linear inhomogeneous conformable fractional delay system
(Dpy) () = =By (x— 1) +/ (x), for x=0,7>0, 5
yx) =0,y (x)=0 for —1<x=<0.
Theorem 3.1. The solution y (x) of Eq. (4) has the representation
v (x), -7 <x=<0,
y(xX) = Hea Bx) Y (—7) + M, (Bx*) ¥’ (—7) (6)
+ ' Moy Blx — T = 0)) 0Dy (v)dv, x> 0.
Proof . We seek for a solution of Eq. (4) in the form
0

Y (xX) =H., (Bx) 1 + M., (Bx) ¢, +/ M., (B(x — T —v)*) v"*Dir (v) dv, (7)

or
0
V(x) =H. o (Bx*)c; + M., (Bx") ¢, +/ M., (B(x —1 —v))1" (v)dv,

where ¢, and ¢, are unknown constants vectors on R”, and r (x) is an unkown twice continuously
differentible vector function. From Lemmas 2.1 and 2.2, we deduce that H. , (Bx*) and M, , (Bx®) are
solutions of Eq. (4). We notice that Eq. (6) is a solution of Eq. (4) due to the linearity of solutions for
arbitrary ¢, ¢, and r (x). Now we find the constants ¢, and c¢,, and the vector function  (x) so that the
initial conditions y (x) = ¥ (x), y(x) = ¥’ (x) for —t < x < 0, are satisfied. That is, the following
relations hold for —7 < x < 0:

H.o (Bx") e, + M, , (Bx") ¢, +/ M., (Bx—1—=v))1r" (v)dv =19 (x), ®)
and
d% {Hr,a (Bx") e, + M., (Bx") ¢, +/ M. (B(x —1 —v)) 1" (v) dU} =V (x). )

Consider Eq. (8). If —t < x < 0, then
Heo (Bx*) =1, M., (Bx)=1x+1),

and

M., (Bx— 1 —v)) = [Ig,_ Ve

which implies that

c1+(x+r)c2+/x (x — ) (V) dv = ¥ (x), (10)
and _

/X x—v)yrWdv=—x+10)r(—t)+rx)—r(-1). (11)
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Substituting Eq. (11) into Eq. (10), we get

(a—rE)+@-rED)E+n+ G -y () =0. (12)
Differentiating Fq. (12) with respect to x, we have

(=1 (=) + (X)) =¥ () =0. (13)
As a result, we find that the equalities obtained Eqs. (12) and (13) are true if

a=v (1), =91, 1(0) =¥ (x). (14)
Substituting Eq. (14) into Eq. (7), we obtain Eq. (6). This finishes the proof.

Theorem 3.2. The particular solution y, (x) of Eq. (5) has the representation

Vo (X) = /XMW (B(x — 1 —v)) v f (v) dv. (15)

Proof . We try to find a particular solution y, (x) of Eq. (5) in the form

Yo (x) = / Mew (Bl — 7 — 1)) & (u) du, (16)

by applying the method of variation of constants, where & (v), 0 < v < x, is an unknown function.
Taking the conformable derivative of Eq. (16), we get

Dy (x) = / DM, (B(x — 7 — 9" E (U)du + XE (1)

= —B/x M., (B(x =2t —0)) € (V) dv + X°E (X) . (17)

Substituting Eqs. (16) and (17) into Eq. (5), and noting that
/ M., (B(x =2t —v)) & (V)dv =0,

We have x*“& (x) = f (x). Substituting & (x) = x*7*f (x) into Eq. (16), we obtain Eq. (15). This
completes the proof.

Corollary 3.1. The solution y (x) of Eq. (1) can be represented as
¥ (x), -1 <x=0,
Heo (BX) Y (=7) + M., (BX) Y’ (—7)
+ [ M., (B(x — T — 0)*) 02D (v) dv
+ Jy Moo (B(x — 7 —0)) v (v)dv,  x=>0.
Remark 3.1. Let « = 2 in Eq. (1). Then Corollary 3.1 coincides with Corollary 1 in [13].

y(x) = (18)

Remark 3.2. Let « = 2, B = B*in Eq. (1) such that the matrix B is a nonsingular » x n matrix.
Then

H., (B’x’) = cos, (Bx), M., (B’x*) =B 'sin, (Bx).

where cos, (Bx) and sin, (Bx) are called the delayed matrix of cosine and sine type, respectively, defined
in [12]. Therefore, Corollary 3.1 coincides with Theorems 1 and 2 in [12].
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4 Finite Time Stability of Linear Conformable Fractional Delay Systems

In this section, we establish some sufficient conditions for the finite time stability results of Eq. (1)
by using a norm estimation of the conformable delayed matrix functions and the formula of general

solutions of Eq. (1).
Theorem 4.1. The system Eq. (1) is finite time stable with respect to {0, W, 1,8, 8}, 8 < B if
B B—3E,(B,L) - JISLE, (2, L
PYAL A (L) — w5 LB G- L) a9)
1 S(L+o)(x+ 1D
Proof . By using Definition 2.3, and Theorems 3.1 and 3.2, we have n < § and

Iy Il < [|Hew Bx) | 1Y (=0l + | M. Bx)| ¥ (=)

+ H/ M., (B(x—1—0))¢¥" (v)dv

+

/XMW B(x—1 —v)) v *f (v)dv

< 5| Heu (Bx)

+8 | M. (Bx)
+ 8/ M. (B(x—1 —v)*)|dv

v dv. (20)

+ e / Mo B =T — )

Note that M., (Bx*) = ® if x € (—o0, —7). For —t < v <0, we get

oy Mr,a (B(X_T_U)a)a UE[—T,X],

Mf’a(B(x_’_“))—{ o, v e (x,0].

Thus

P a _ HMra (B(X -1 U)m) ,» VE [—T,X] 5

Mo Bx =7 —0))| = { 0. v e (x,0].

Therefore, from Lemma 2.4, we have
”M‘r,a (B(x_f_v)a) =< (X_U)Eat (ﬂ,x_v)

( Bl )
<x+DDE|\——.x+1]),
a+1

for -z < v <0, x € W, and since E, (1%, x — v) is increasing function when x > v. From Eq. (21),
we get

B
dugr(x+r)Ea(M,x+r). (22)
a+1

/ [ Moo (B — 7 — 1))
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From Lemma 2.4, we have
M., (B(x—1— U)“)H v 2dvu

Jy ,
I Bl ,X — U) v*2dv

Sfo'(x—v)Ea(aJrl
| Bl

a—_H,x j;)x (x— U)Uaizdl)

__ X E IIBII’x.
a(a—1) a+1

From Eqgs. (20), (22) and (23), we get

B B
ol <ob (B Y vso+ e (ML 4o
a—1 o+ 1

I Bl 171 I Bl
1) E,\ — ——x"E 24
+oTx+T) “(a+1’x+r)+a(oe—l)x “Na+17") 24)
forall x € W. Combining Eq. (19) with Eq. (24), we obtain ||y (x)|| < B8 for all x € W. This completes
the proof.
Corollary 4.1. Let « = 2 in Eq. (1). Then the system

<E (23)

V' (x)=-By(x—1)+f(x), for x>0,7 >0,

yx) =y x),yx=y(x) for —t<x=<0,
is finite time stable with respect to {0, W, 1,8, 8}, 8 < B if

g (VB ;) B-E(BILL) - HeLE (1)
'\ 3 S(L+7)(t+1) '

Remark 4.1. Let « = 2, B = B’ in Eq. (1) such that the matrix B is a nonsingular » x n matrix.

Then the representation of solution Eq. (18) coincides with the conclusion of Theorems 1 and 2in[12],

which leads to the same of the finite time stability results in [27].

5 An Example

Consider the conformable delay differential equations
(D5'y) () = =By (x = 0.5) +/ (x), x €[0,1], 25)
Y (x) = (0.1x%,0.2x) ", ' (x) = (0.2x,0.2)", " (x) = (0.2,0)", —0.5 < x < 0,

where

2 0 xl/S
a=138, =05, B= (0 2) , T(x) = (2)6]/5 ) .
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From Theorems 3.1 and 3.2, for all 0 < x < 1, and through a basic calculation, we can obtain

_((0.025H, 5,5 (2x™) —0.1 M5, 5 (2x"*)
Y (X) N (_0'1H045,1.8 (2)(:1'8) + O.ZMO,S,I.S (2_)(1.8)

N (0.2 [ Mosis (2(x — 0.5 — v)'*) dv )
0

+ ( j;x Mg (2(X -0.5- U)l'g) dv ) _ (.Vl (x) ) ’

2 j;)/\’ M0_5)1_g (2(X - 0.5 - U)lig) dU B y2 (x)
which implies that
P (x) = 0.025H,5,5 (2x1'8) — 0.1 M55 (2x1,g)

0
+0.2 / Mosis (2(x = 0.5 — v)'*) dv
—0.5

+ / MO}S,I(g (Z(X — 05 — U)l‘g) dU,
0

and
P (x) = —0.1H 5.5 (2xl'8) + 0.2 M55 (2xl'8)

2 [ Mo (266 - 0.5 = 0)") o
0

where
L -05<x<0,
1 25 1.8 O < 0 5
Hosis (2X1'8) = _2%_8)6 ’ s <x <05,
1 — 2218 —0.5)° 05 < 1
i8° T T <x<l,
and
(x+0.5), —-05<x<0,
25 25
MO.S,LS (le'g) — (X + 05) —Z?X , s 0 <x< 05,
05 T 28 _ 05 4.6 05 < 1
(09 = 3+ T30y ¢ 09 =x <

Thus the explicit solutions of Eq. (25) are
B4 (x) = 0-0257{0‘5‘1.8 (2X1'8) — O~1MOA5.1,8 (2)(:1'8)

x—0.5

+02 [ Mosis 26— 05— 1)) duv

—0.5

0
+ 0.2/ Msis (2(x —0.5— U)I'S) dvu
x—0.5

+ / MO,S,LS (Z(X — 05 — U)I'S) dl),
0
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P (x) = —0.1H 5.4 (2X1'8) + 0.2 M55 (2X1'8)

+ 2/ M0.5,1A8 (2(x — 05 — U)LS) dU,
0

where 0 < x < 0.5, which implies that
25 5 1 5

_ 38 ;2 28 L oo 21
L T TR T TR R VYR

5 5 1
y2 (x) — _@xlg +x2 _|_ %xlﬁ _|_ gx,
and

Vi (x) =0.025H,5,5 (2X1‘8) —0.1M5,5 (2X1‘8)

x—1
+ 0.2/ Misis (2(x —-0.5— U)l'g) dv
-0.5

0

+ 0.2 MO.S.I.S (2(x —0.5- U)l'g) dU

x—1

x—0.5
+/ M0A5§1'g (2(X — 05 — U)Lg) dU
0

X

+ Mosis (2(x —0.5— v)l‘g) dv,
x—0.5

V2 (x) = —0.1H,5,5 (2x1'8) +0.2M515 (2x1'8)

x—0.5
+2 / Mosis (206 = 0.5 — 0)'*) dv
0

+ 2/ MO.S,],S (2(x — 05 — U)l'8> dU,
x—0.5

where 0.5 < x < 1, which implies that

62 se 125 w6 100 38
M0 = 3eag ¥ 07 5 097 — g7 (v = 09
125 25 5 | 5
—0.5)% — 38 , 2 28 T oo 2 g
T leeas Y T 197 Tt T2Y T st
5 250
- — 0.5 — 220 (x —0.5)*
72 () = 3 T 09 = gy (e = 09)
125

5 5 1
= _ 05 3.6 T2 2 RN B —x.
(x ) 63x +x" + 36x + Sx
By calculating we obtain n = max {||¥|lc, |¥'llc, 1¥"llc} = 0.3, 1Bl = 2, Ifllc = 3, E. (5. L) =
4.0104, E, (£,L+0.5) = 2.278, E, (&, L) = 1.4871, then we set § = 0.31 > 0.3 = n. Fig. | shows

the state y (x) and the norm ||y (x)|| of Eq. (25). Now Theorem 4.1 implies that ||y (x)|| < 5.930254,
we just take 8 = 5.9303, which implies that ||y (x)|| < B8 and Eq. (25) is finite time stable.
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—y,x) lf
5 yzfx} £
= = = llyCall ’
4r e
Fd
w3l ” -
5 e
2 2t e
1 - - -_—_P_F'_'_'_.o—"J——’—_
T —
0 —_— 4
1 . | . :
0 0.2 0.4 0.6 0.8 1

Figure 1: The state y(x) and ||p(x)|| of Eq. (25)

6 Conclusion

In this work, using new conformable delayed matrix functions, we derived explicit solutions
of linear conformable fractional delay systems of order « € (1,2], which extend and improve the
corresponding and existing ones in [12,13] in the case of @ = 2 without any restrictions on the matrix
coefficient of the linear part, by removing the condition that B is a nonsingular matrix and replacing
the matrix coefficient of the linear part B* in [12] by an arbitrary, not necessarily squared, matrix. In
addition, using the formula of general solutions and a norm estimation of the conformable delayed
matrix functions, we established some sufficient conditions for the finite time stability results, which
extend and improve the existing ones in [27] in the case of @ = 2. Ultimately, an illustrative example
was given to show the validity of the proposed results.

Following the topic of this paper, we outline some possible next research directions. The first
direction will include applying the results of this paper on control problems for conformable fractional
delay systems of order o € (1,2]. The second direction is to consider the explicit solutions of linear
conformable fractional delay systems of the form

D, (’Dg‘y) xX)=—-By(x—r1), for x>0,7 >0,

YO =y ), yx)=y'(x) for —t<x=<0,0<ac=l,

which lead to new results on stability and control problems. Depending on these results and delayed
arguments, we will try to prove a generalized Lyapunov-type inequality for the conformable and
sequential conformable boundary value problems

(D%y) (x) = =By (x—1), for x€(a,b),ac(,2]
y@=yb) =0, -t <x=0, |
(D) (x) = —By(x—1), for x€(a,b),ae (5, 1]
y@=ybh) =0, -1t <x=<0,
and
DU (D2y) (x) = —By(x— 1), for x€(a,b),a,a € (0,1]
y@=y®b)=06 for —t=<x<0,1 <o+a, <2,

which leads to new results on the conformable Sturm-Liouville eigenvalue problem.
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