
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.014191

Article

Optimality of Solution with Numerical Investigation for
Coronavirus Epidemic Model

Naveed Shahid1,2, Dumitru Baleanu3,4,5, Nauman Ahmed1,2, Tahira Sumbal Shaikh6, Ali Raza7,*,
Muhammad Sajid Iqbal1, Muhammad Rafiq8 and Muhammad Aziz-ur Rehman2

1Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan
2Department of Mathematics, University of Management and Technology, Lahore, Pakistan

3Department of Mathematics, Cankaya University, Balgat, Ankara, 06530, Turkey
4Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

5Institute of Space Sciences, Magurele-Bucharest, Romania
6Department of Mathematics, Lahore College for Women University, Lahore, Pakistan

7Department of Mathematics, National College of Business Administration and Economics Lahore, Pakistan
8Department of Mathematics, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan

*Corresponding Author: Ali Raza. Email: Alimustasamcheema@gmail.com
Received: 04 September 2020; Accepted: 01 December 2020

Abstract: The novel coronavirus disease, coined as COVID-19, is a murderous
and infectious disease initiated from Wuhan, China. This killer disease has
taken a large number of lives around the world and its dynamics could not be
controlled so far. In this article, the spatio-temporal compartmental epidemic
model of the novel disease with advection and diffusion process is projected
and analyzed. To counteract these types of diseases or restrict their spread,
mankind depends upon mathematical modeling and medicine to reduce, alle-
viate, and anticipate the behavior of disease dynamics. The existence and
uniqueness of the solution for the proposed system are investigated. Also, the
solution to the considered system is made possible in a well-known functions
space. For this purpose, a Banach space of function is chosen and the solutions
are optimized in the closed and convex subset of the space. The essential
explicit estimates for the solutions are investigated for the associated auxiliary
data. The numerical solution and its analysis are the crux of this study. More-
over, the consistency, stability, and positivity are the indispensable and core
properties of the compartmental models that a numerical designmust possess.
To this end, a nonstandard finite difference numerical scheme is developed to
find the numerical solutions which preserve the structural properties of the
continuous system. The M-matrix theory is applied to prove the positivity of
the design. The results for the consistency and stability of the design are also
presented in this study. The plausibility of the projected scheme is indicated by
an appropriate example. Computer simulations are also exhibited to conclude
the results.
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1 Introduction

Transmission of different infectious diseases occur in various parts of the world. To under-
stand the dynamics of these, mathematicians have developed and analysed the mathematical
models by taking into account their different aspects [1–7]. These models have a vital role to
mitigate and to design the control strategy for the diseases. COVID-19 is one of the infectious
diseases which creats severe acute respiratory syndrome. In December 2019, the first case of novel
coronavirus was diagnosed in Wuhan, China and now, the whole world is in its deadly grip [8].
World Health Organization (WHO) declared this disease, a pandemic in the first half of 2020 [9].
According to the medical experts, this type of virus is extremely dangerous for old people having
problems related to lungs, immune system, diabetes and blood pressure [10]. After the spread of
this disease, the confirmed cases increased rapidly because of the non-availability of the vaccine.
There may be more reasons for its spread, for instance, lack of awareness, lack of facilities to
take the precautionary measures and many more. Due to this situation, the number of deaths
are increasing day by day. The health workers including doctors, paramedical and other staff
of the local health centers are in a high danger zone. Because, they face the infected people
on the front lines. So, the identification of the infected cases is necessary at the initial stage so
that the disease could not be transmited to other people. Since the beginning of 2020, a large
number of confirmed cases exposed in the other cities of China. Now, it has diffused all over the
world. In the middle of April 2020, the virus affected almost all the countries on the globe and
1,929,995 confirmed cases and 119,789 deaths were recorded [11]. There are different thoughts in
the world about the dispersion of COVID-19. According to some people, it is transmitted due
to bats, and some associate it with the seafood market [12]. Another strong reason for the fast-
spreading of this virus is the traveling of infected persons, globally [13,14]. It is considered that
COVID-19 is transmitted from animal to human, as most of the initial infected cases in Wuhan
suspected that it is due to the seafood and animal market in the city [15]. later, it was noticed
that, the virus is transmitting from human to human also [16]. Now, in the current situation, this
pandemic has become a great threat for the whole world. It has damaged seriously, the life of
humans. Since harmful impacts can be seen in the economy, health, education, employment and
social life. In order toprovide security, every country is taking some serious steps depending on
its available resources. The mathematicians are also observing the dynamics of this disease and
trying to describe its behavior by developing the mathematical models. These models are helpful
for the policymakers and scientists to understand the disease dynamics. They can make a future
prediction of the disease communication and some precautionary measures may be adopted to
save the lives of the population. The different aspects of COVID-19 has also attracted the other
researchers and they have been studying the disease since a few months [17,18]. After developing
a suitable mathematical model of this infection, it is a challenge for the researchers to find
the solutions to these models. Usually, these models have a number of parameters (defining the
rates with which various compartments are affected) so, in general, it becomes hard to find their
analytical solutions. In this situation, the numerical solutions to these models are investigated.
Numerical solutions and simulations help us to understand the behavior of the disease, especially
when advection and diffusion terms are included in the model. In this article, a Spatio-temporal
epidemic model of COVID-19 with advection and diffusion phenomena is analyzed. In the first
section, the optimal existence of the solution is discussed and explicit estimates of the solution
for the admissible auxiliary data are formulated. In Section 2, the non-standard finite difference
(NSFD) method is developed for the proposed model and numerical solutions are found. In
Section 3, the important physical properties of our numerical scheme are discussed. The positivity
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of the proposed scheme is also proved by applying the M-matrix theory. In Section 4, numerical
simulations are presented. Concluding remarks are given in the last Section 5. In this article, a
Spatio-temporal epidemic model regarding COVID 19 with advection and diffusion is analyzed.
The model is described as:

St (x, t)+α1Sx (x, t)= a− cIS (1+ γ I)−μS+αR+ d1Sxx (x, t)

It (x, t)+α2Ix (x, t)= cIS (1+ γ I)− (β +μ+ δ − b) I + d2Ixx (x, t)

Rt (x, t)+α3Rx (x, t)= βI − (α+μ)R+ d3Rxx (x, t)

⎫⎪⎬
⎪⎭ (1)

where, S (t) represents the susceptible individuals, I (t) is identified as infected population, R (t)
is recovered population, a represents the recruitment rate, μ is the natural death rate, δ (death
ratedue to corona virus), b (immigration rate of infected population), α (recovery rate from
infection), β (recovery rate from corona virus), c (infection rate) and γ describes the rate of
recovered individuals that lose immunity. Also, α1,α2 and α3 represent the advection coefficients
while d1,d2 and d3 stand for diffusion coefficients.

The initial conditions for the system (1) are S (x, 0) = S0 (x) > 0, I (x, 0) = I0 (x) > 0 and
R (x, 0)=R0 (x) > 0.

The corona virus free equilibrium for the model (1) is E0 = ( a
μ
, 0, 0).

And, the corona existence equilibrium is

Ee =
(
S∗, I∗,R∗)=((α

β

μ (α+μ)
− 1

μ
(β +μ+ δ − b)

)
I∗

− a
μ
,
− (Cγ +B)+

√
(Cγ −B)2+ 4BAγ

2 (C−A)
,

βI∗

(α+μ)

⎞
⎠ .

where A = μ(α+μ) (β +μ+ δ− b), B = (αcβ − c (α+μ) (β +μ+ δ − b)) and C = −ac (α+μ).
The basic reproduction number denoted by R0, is given as R0 = ac

μ(β+μ+δ−b) .

To examine the epidemic model (system of differential equations) incorporating the advection
and diffusion terms, the understanding of the differential equations in epidemic model of the
underlying system is necessary. These governing equations make the model easy for studying. To
solve these equations for the underlying epidemic model numerically, it is important to investigate
the existence, uniqueness, and convergence of the solution to the fixed point or equilibrium
point [19,20]. Existence of the solution forthese types of models is mandatory before finding
the numerical solution.When the solution of the system is confirmed, then the next task is to
find the desirable solutions that can be approximated. Lastly, a most feasible solution is picked
out, which is in accordance with the constraints of the system. In general, the solutions to the
differential equations lie in the spaces of functions which are known as Banach spaces. Generally,
the solutions (functions) to the differential equations are not globally bounded so, it is always
better to consider the subset of a function space. The explicit estimates can also be formulated. In
2005, Tutschke introduced the notion of explicit estimates for the general operator equations [21].
Initially, the problems are changed in to the form of fixed-point operators and their solutions
are ensured in the subsets of the function spaces that lead to the restriction on the diameter of
the subsets for given boundary values or intervals. Similarly, a chosen diameter can also lead to
the restriction to the admissible auxiliary data. The subset (closed ball) for which the restriction
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is imposed, is called optimal ball. In the best of our knowledge, the explicit estimates with the
optimal balls for any epidemic model have never been discussed.

2 Optimal Existence

In this section, optimal conditions are investigated in the frame work of Banach space, for
some related quantities used in the procedure of developing the results, concerning the existence
of optimal solutions of the proposed COVID-19 model (1). The system (1) can be reshaped in
more general form

St (x, t)=G1 (S, I ,R,Sx,Sxx)

It (x, t)=G2 (S, I ,R, Ix, Ixx)

Rt(x, t)=G3 (S, I ,R,Rx,Rxx)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2)

In this form G1,G2 and G3 are real valued functions that may be nonlinear, such that the
nonlinearity of G1,G2 and G3 may depend not only on S, I and R but also on Sx,Sxx, Ix, Ixx,Rx
and Rxx The solutions of above system (2) can be written in the following equivalent form:

S (x, t)= S0+
∫ t

0
G1 (S, I ,R,Sx,Sxx) (x,ω)dω

I (x, t)= I0 +
∫ t

0
G2 (S, I ,R, Ix, Ixx) (x,ω)dω

R (x, t)=R0+
∫ t

0
G3 (S, I ,R,Rx,Rxx) (x,ω)dω

After combining these equations, we get,

S (x, t)= S0+
∫ t

0
G1

(
S, I0+

∫ ω

0
G2 (S, I ,R, Ix, Ixx) (x,u)du,R0

+
∫ ω

0
G3 (S, I ,R,Rx,Rxx) (x, v)dv,Sx,Sxx

)
(x,ω)dω.

According to the operator theory, the above integral equation which is considered for the
solution of (2), can be written in operator form, as

H (S (x, t))= S (x, t) ,S (x, t) ∈C2,1
x,t [a,b] .

Now, consider the Banach space X =C[0,λ], for any λ >0. For the existence of the solution
of system (1), Shauder fixed point theorem will be used here. For this, it is necessary to prove the
fixed-point operator H to be a self mapping on B(r,Θ), that is H : B(r,Θ)→ B(r,Θ) defined by

H (S (x, t))= S0+
∫ t

0
G1

(
S, I0+

∫ ω

0
G2 (S, I ,R, Ix, Ixx) (x,u)du,R0

+
∫ ω

0
G3 (S, I ,R,Rx,Rxx) (x, v)dv,Sx,Sxx

)
(x,ω)dω.
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Suppose also, that H is bounded by φ(r), that is ‖H (x, t)‖ ≤ φ(r), where φ(r) is a continuous
real valued function. Optimization for the proposed model will be done in this space. For this
purpose, a closed and convex subset of the Banach space will be chosen which is called a closed
ball in X . The consideration of this closed ball yields two cases:

Case 1. Assume that B(r,Θ)= {S|S ∈X : ||S−Θ|| ≤ r, r> 0} be a closed ball with center at Θ,
zero of X , and radius r. Consider,

‖H (x, t)−Θ‖ =
∥∥∥∥S0 +

∫ t

0
G1(x,ω)dω

∥∥∥∥ ,
where,

G1 ≡G1

(
S, I0+

∫ ω

0
G2 (S, I ,R, Ix, Ixx) (x,u)du,R0+

∫ ω

0
G3 (S, I ,R,Rx,Rxx) (x, v)dv,Sx,Sxx

)

⇒‖H (x, t)−Θ‖ ≤ |S0| +φ(r)t

≤ |S0| +φ (r) λ

For H to be a self-mapping it should satisfy

|S0| +φ (r) λ≤ r. (3)

The optimized value of r can be obtained by fixing S0 and λ, the length of interval of
continuity, which is calculated from

r≥ |S0| +φ (r) λ (4)

Also, by fixing the values of S0 and r, we can optimize λ such that

λ≤ r− |S0|
φ(r)

(5)

To obtain the greatest value of λ, one must have to maximize r−|S0|
φ(r) . For this purpose, after

some calculations for maximization of a function, we get an equation

φ (r)− (r− |S0|)φ′ (r)= 0 (6)

Let R∗ be an optimized radius of the closed ball. Clearly, it will satisfy the Eq. (6).

On the other hand, if we fix λ, then from (3) we can optimize the value of S0

|S0| ≤ r−φ (r) λ (7)

Again, the maximum value of r−φ (r) λ gives the maximum S0. In this case, assume that R∗∗
be the optimized radius which will satisfy the expression φ ′ (r)= 1

λ
.

Case 2. Assume that B(r,Θ) = {S|S ∈X : ||S−S0|| ≤ r, r> 0} be a closed ball with center at
S0, initial condition,and radius r.

Now, consider

‖H (x, t)−S0‖ =
∥∥∥∥S0 +

∫ t

0
G1(x,ω)dω−S0

∥∥∥∥ ,
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where,

G1 ≡G1

(
S, I0+

∫ ω

0
G2 (S, I ,R, Ix, Ixx) (x,u)du,R0+

∫ ω

0
G3 (S, I ,R,Rx,Rxx) (x, v)dv,Sx,Sxx

)

⇒‖H (x, t)−S0‖ ≤ φ (r) t

≤ φ (r) λ.

For H to be a self map it should have

φ (r) λ≤ r. (8)

The fix values of S0 and λ give the optimized radius, such that

r≥ φ (r) λ. (9)

Again, for the fixed values of S0 and r, we can optimize λ such that

λ≤ r
φ(r)

(10)

Similarly, to obtain the large interval of continuity, one must have to maximize r
φ(r) , where

φ(r) is supposed to be differentiable so, the optimal radius r=R∗∗ should satisfy the equation

φ (r)= rφ′ (r) (11)

If, φ(r) is twice differentiable on R then, d2

dr2

(
r

φ(r)

)
=− rφ′′(r)

(φ(r))2
.

If, φ′′ (r) > 0, for all values of r then, r
φ(r) will be maximum for every R∗∗, which is the exact

root of (11). According to the theory of calculus, between any two maxima for a function, there
exists at least one point at which the function has minimum value. Therefore, with the presence
of condition φ′′ (r) > 0, Eq. (11) has not more than one solution. An important result can be
developed in the light of above discussion. The following theorem is established in this respect.

Theorem: Suppose that, φ(r) be a continuously differentiable function then, the equation
φ (r)= rφ′ (r) has a root which becomes an optimal radius. Moreover, for φ (r) ∈C2 and φ (r) > 0,
there exists at most one optimal radius of a closed and convex subset of a Banach space X
which possesses the solution of (1). Numerical analysis has a prominent role in the study of
applied mathematics, specially for the analysis of epidemic models. To find the solutions of these
models, we use different numerical techniques and through simulation we confirm the behavior
of the solution. The numerical techniques which preserve the important properties of the model,
for instance, positivity, consistency, stability, convergence and boundedness [22–24]. In the next
section, a suitable nonstandard finite difference scheme is applied to obtain the numerical solution.

3 Numerical Analysis of Proposed Model

The finite difference methods make, the approximate solutions of the systems involving linear
and nonlinear systems of partial differential equations, easy [25]. In these techniques, we convert
the continuous model in to a discrete formulation choosing the finite number of function values
at some finite number of points in the domain, which is easy to handle. The Taylor’s series is the
bestway to obtain these approximations. Now, let M and N be any to finite positive integers and
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T be any positive real number. The spatial interval [a,b] over the time period [0,T ] are discretized
according to the partitions a = x0 < x1 < x2 < . . . < xM = b and 0 = t0 < t1 < t2 < . . . < tN = T
respectively, with the norm h= b−a

M and k= T
N . Divide [a,b]× [0,T ] having M×N grid points with

space and time step sizes h and k respectively. The points of the partitions now become xi = ih
and tn = nk, where i = 0, 1, 2, . . . ,M and n = 0, 1, 2, . . . ,N. Suppose that, Sni , I

n
i and Rni denote

the approximations of S(x, t), I(x, t) and R(x, t) respectively at the grid points (ih,nk) . In this
article, we use a non-standard finite difference implicit scheme carrying some important physical
properties for the discrete model, developed in [26]. Discrete model equations form a matrix or
iterative process that are used to find the best approximation of the solution to the system (1).
The system (1) can be converted in to discrete form by using the following approximations.

Ft =
Fn+1
i −Fni

k

Fx =
Fn+1
i −Fn+1

i−1

h

Fxx =
Fn+1
i−1 − 2Fn+1

i +Fn+1
i+1

h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

From first Eq. of (1),

Sn+1
i −Sni

k
+α1

(
Sn+1
i −Sn+1

i−1

h

)
= a− cIni S

n+1
i

(
1+ γ Ini

)−μSn+1
i +αRni

+ d1

(
Sn+1
i−1 − 2Sn+1

i +Sn+1
i+1

h2

)
,

Sn+1
i −Sni +

α1k
h

(
Sn+1
i −Sn+1

i−1

)
= ak− ckIni S

n+1
i

(
1+ γ Ini

)−μkSn+1
i +αkRni

+ d1k
h2

(
Sn+1
i−1 − 2Sn+1

i +Sn+1
i+1

)
.

By substitute g1 = α1k
h , g2 = d1k

h2
, we get the expression given below,

Sn+1
i −Sni + g1

(
Sn+1
i −Sn+1

i−1

)
= ak− ckIni S

n+1
i

(
1+ γ Ini

)−μkSn+1
i +αkRni

+ g2
(
Sn+1
i−1 − 2Sn+1

i +Sn+1
i+1

)
,

− (g1+ g2)S
n+1
i−1 + (1+ 2g2+ ckIni

(
1+ γ Ini

)+μk
)
Sn+1
i − g2S

n+1
i+1 = ak+αkRni +Sni . (13)

Again, second Eq. of (1) becomes as

In+1
i − Ini

k
+α2

(
In+1
i − In+1

i−1

h

)
= cIni S

n
i
(
1+ γ Ini

)− (β +μ+ δ − b) In+1
i + d2

(
In+1
i−1 − 2In+1

i + In+1
i+1

h2

)
,
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Put g′1 = α2k
h and g′2 = d2k

h2

− (g′1+ g′2
)
In+1
i−1 + (1+ g′1+ k (β +μ+ δ − b)+ 2g′2

)
In+1
i − g′2I

n+1
i+1 = ckIni S

n
i
(
1+ γ Ini

)+ Ini . (14)

Also, the third Eq. of (1) becomes as follows,

Rn+1
i −Rni
k

+α3

(
Rn+1
i −Rn+1

i−1

h

)
= βIni − (α+μ)Rn+1

i + d3

(
Rn+1
i−1 − 2Rn+1

i +Rn+1
i+1

h2

)
.

Insert g′′1 = α3k
h , g′′2 = d3k

h2
in above, we get

− (g′′1 + g′′2
)
Rn+1
i−1 + (1+ g′′1 + k (α+μ)+ 2g′′2

)
Rn+1
i − g′′2R

n+1
i+1 = βkIni +Rni . (15)

4 Physical Properties of the Proposed Numerical Scheme

4.1 Consistency of the Discrete Model
After developing the discrete model from the continuous model, it is very important to check

whether the discrete model is consistent with the given continuous model because, the solution of
the discrete model approximates the exact solution associated to the continuous model. We also
observe the order of consistency of our proposed scheme. After using the approximations (12)
and Taylor series in all the equations of (1), we get, first equation of (1)

Sni + k
∂S
∂t

+ k2

2!
∂2S
∂t2

+ k3

3!
∂3S
∂t3

+ · · · −Sni +
α1k
h

(
Sni + k

∂S
∂t

+ k2

2!
∂2S
∂t2

+ k3

3!
∂3S
∂t3

+ · · · −Sni − k
∂S
∂t

+h∂S
∂x

− k2

2!
∂2S
∂t2

− h2

2!
∂2S
∂x2

+ 2
hk
2!

∂2S
∂t∂x

− k3

3!
∂3S
∂t3

+ · · ·
)
= ak−

(
Sni + k

∂S
∂t

+ k2

2!
∂2S
∂t2

+ k3

3!
∂3S
∂t3

+ · · ·
)

× (ckIni (1+ γ Ini
)+μk

)+αkRni +
d1k
h2

(
Sni + k

∂S
∂t

− h
∂S
∂x

+ k2

2!
∂2S
∂t2

+ h2

2!
∂2S
∂x2

− 2
hk
2!

∂2S
∂t∂x

+ k3

3!
∂3S
∂t3

+· · · − 2

(
Sni + k

∂S
∂t

+ k2

2!
∂2S
∂t2

+ k3

3!
∂3S
∂t3

+ · · ·
)
+Sni + k

∂S
∂t

+ h
∂S
∂x

+ k2

2!
∂2S
∂t2

+ h2

2!
∂2S
∂x2

+ 2
hk
2!

∂2S
∂t∂x

+k3

3!
∂3S
∂t3

+ · · ·
)
,

Taking k common from both sides and apply k→ 0 and h→ 0, we get

∂S
∂t

+α1
∂S
∂x

= a− cIS (1+ γ I)−μS+αR+ d1∂2S/∂x2.

From second equation of (1), we get

Ini + k
∂I
∂t

+ k2

2!
∂2I
∂t2

+ k3

3!
∂3I
∂t3

+ · · · − Ini +
α2k
h

(
Ini + k

∂I
∂t

+ k2

2!
∂2I
∂t2

+ k3

3!
∂3I
∂t3

+ · · · − Ini − k
∂I
∂t

+ h
∂I
∂x
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− k2

2!
∂2I
∂t2

− h2

2!
∂2I
∂x2

+ 2
hk
2!

∂2I
∂t∂x

− k3

3!
∂3I
∂t3

+ · · ·
)
= ckIni S

n
i
(
1+ γ Ini

)− k (β +μ+ δ − b)
(
Ini + k

∂I
∂t

+k2

2!
∂2I
∂t2

+ k3

3!
∂3I
∂t3

+ · · ·
)
+ d2k

h2

(
Ini + k

∂I
∂t

− hmgv
∂I
∂x

+ k2

2!
∂2I
∂t2

+ h2

2!
∂2I
∂x2

− 2
hk
2!

∂2I
∂t∂x

+ k3

3!
∂3I
∂t3

+· · ·− 2

(
Ini + k

∂I
∂t

+ k2

2!
∂2I
∂t2

+ k3

3!
∂3I
∂t3

+ · · ·
)
+ Ini + k

∂I
∂t

+ h
∂I
∂x

+ k2

2!
∂2I
∂t2

+ h2

2!
∂2I
∂x2

+ 2
hk
2!

∂2I
∂t∂x

+k3

3!
∂3I
∂t3

+ · · ·
)
,

Taking k common from both sides and apply k→ 0 and h→ 0, we get

∂I
∂t

+α2
∂I
∂x

= cIS (1+ γ I)− (β +μ+ δ − b) I + d2
∂2I
∂x2

.

Similarly, we can get third equation of (1). Hence, our proposed scheme is consistent with
accuracy of order 2.

4.2 Stability of the Proposed Scheme
From Eq. (13)

− (g1+ g2)S
n+1
i−1 + (1+ 2g2+ ckIni

(
1+ γ Ini

)+μk
)
Sn+1
i − g2S

n+1
i+1 = ak+αkRni +Sni

After preforming the process of linearization, we get,

− (g1+ g2) ϕ1 (t+Δt) eiw(x−Δx) + (1+ 2g2+ ck (1+ γ )+μk) ϕ1 (t+Δt) eîwx− g2ϕ1 (t+Δt) eîw(x+Δx)

= ϕ1 (t) eiwx,

ϕ1 (t+Δt)
ϕ1 (t)

= eiwx

− (g1+ g2) eiw(x−Δx) + (1+ 2g2+ ck (1+ γ )+μk) eîwx− g2eîw(x+Δx)
,

∣∣∣∣ϕ1 (t+Δt)
ϕ1 (t)

∣∣∣∣=
∣∣∣∣ 1
− (g1+ g2)e−Δxiw+ (1+ 2g2+ ck (1+ γ )+μk)− g2eΔxiw

∣∣∣∣≤ 1.

Eq. (14) implies

− (g′1+ g′2
)
In+1
i−1 + (1+ g′1+ k (β +μ+ δ − b)+ 2g′2

)
In+1
i − g′2I

n+1
i+1 = ckIni S

n
i
(
1+ γ Ini

)+ Ini

⇒− (g′1+ g′2
)
ϕ2 (t+Δt) eiw(x−Δx) + (1+ g′1+ k (β +μ+ δ − b)+ 2g′2

)
ϕ2 (t+Δt)

× eîwx− g′2ϕ2 (t+Δt) eîw(x+Δx) = ϕ2 (t) eiwx

This implies that∣∣∣∣ϕ2 (t+Δt)
ϕ2 (t)

∣∣∣∣=
∣∣∣∣∣ 1

− (g1+ g2) e−Δxiw+ (1+ g′1+ k (β +μ+ δ − b)+ 2g′2
)− g′2eΔxiw

∣∣∣∣∣≤ 1.
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Similarly, from Eq. (15), we also have∣∣∣∣ϕ3 (t+Δt)
ϕ3 (t)

∣∣∣∣≤ 1.

which shows that the proposed scheme is Von-Neumann stable.

4.3 Positivity
According to [27], M-matrix theory is a reliable tool for the verification of the positivity for

most of the numerical models concerning engineering, economics, autocatalytic chemical reactions
etc. A square matrix over a real field R is said to be an M-matrix if all entries in the off-diagonal
are non-positive.

4.4 Z-Matrix
If all the off-diagonal entries of a real matrix A are non-positive then A is called a Z-matrix.

4.5 M-Matrix
A square matrix A over R is an M-matrix if:

(i) A is a Z-matrix.
(ii) all the diagonal components of A are positive,
(iii) A is strictly diagonally dominant.

It is important to note that M-matrices are non-singular so are invertible and their inverses
are positive matrices [28]. This important property will be used in the next result.

Remark: It is clear that M- matrix is a diagonally dominant and its inverse always consists
of positive entries.

Theorem: For any h≥0 and k≥0 the discretized system (13)–(15) has positive solutions. That
is, Sn ≥0, In ≥0 and R≥0 for all n= 0, 1, 2, 3, · · ·,N.

Proof: It is important to note that the discrete system (13)–(15) generated from finite
difference method can be converted in the vector form, such as

DSn+1 = ak+αkRni +Sni . (16)

EIn+1 = ckIni S
n
i
(
1+ γ Ini

)+ Ini . (17)

FRn+1 = βkIni +Rni . (18)

In the above setting, D,E,F are square matrices of order (M + 1).

Then

D=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(β1)
n
0 β2 0 0 0 0

β3 (β1)
n
1 β4 · · · 0 0 0

0 β3 (β1)
n
2 0 0 0

...
. . .

...
0 0 0 (β1)

n
M−2 β4 0

0 0 0 · · · β3 (β1)
n
M−1 β4

0 0 0 0 β3
(
β∗
1

)n
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(γ1)
n
0 γ2 0 0 0 0

γ3 (γ1)
n
1 γ4 · · · 0 0 0

0 γ3 (γ1)
n
2 0 0 0

...
. . .

...
0 0 0 (γ1)

n
M−2 γ4 0

0 0 0 · · · γ3 (γ1)
n
M−1 γ4

0 0 0 0 γ3
(
γ ∗
1

)n
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(δ1)
n
0 δ2 0 0 0 0

δ3 (δ1)
n
1 δ4 · · · 0 0 0

0 δ3 (δ1)
n
2 0 0 0

...
. . .

...
0 0 0 (δ1)

n
M−2 β4 0

0 0 0 · · · δ3 (δ1)
n
M−1 δ4

0 0 0 0 δ3
(
δ∗1
)n
M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The diagonal elements of X are (β1)
n
r = 1+μk+ 2g2 + ckInr (1+ γ Inr ), (β∗

1 )
n
r = 1+μk+ g2 +

ckInr (1+γ Inr ), r= 0, 1, 2, . . . ,M and for all n ∈ {0, 1, 2, . . .N} and the values of off-diagonal elements
are β2 =− (g1+ 2g2), β3 =− (g1+ g2), β4 =−g2.

The diagonal elements of Y are (γ1)
n
r = 1 + g′1 + k (β +μ+ δ − b) + 2g′2, (γ ∗

1 )nr = 1 + g′1 +
k (β +μ+ δ − b)+g′2, r= 0, 1, 2, . . . ,M and for all n ∈ {0, 1, 2, . . .N} and the values of off-diagonal

elements are γ2 =− (g′1+ 2g′2
)
, γ3 =− (g′1+ g′2

)
, γ4 =−g′2.

Similarly, the diagonal and off-diagonal entries of Z are, (δ1)
n
r = 1+ k (α+μ)+ 2g′′2, (δ∗1)

n
r =

1+k (α+μ)+g′′2, r= 0, 1, 2, . . . ,M; for all n ∈ {0, 1, 2, . . .N} and δ2 =− (g′′1 + 2g′′2
)
, δ3 =− (g′′1 + g′′2

)
,

δ4 =−g′′2 respectively.

The entries in the column matrices of the system (16)–(18) are ak + αkRni + Sni ,

ckIni S
n
i

(
1+ γ Ini

) + Ini , βkIni + Rni respectively. Also, since Sn = (
Sn0,S

n
1, . . . ,S

n
M

)T and In =(
In0 , I

n
1 , . . . , I

n
M

)T , Rn= (Rn0,Rn1, . . . ,RnM)T and S0i , I
0
i and R0

i are non-negative so are the diagonal
entries of D,E and F . Moreover, all the off-diagonal entries of the matrices D,E,F are negative
and the matrices D, E, F are strictly diagonally dominant. This implies that the matrices D, E
and F are M-matrices which concludes that D, E and F are non-singular and hence invertible. So
(16)–(18) can be written as

Sn+1 =D−1{ak+αkRni +Sni }. (19)

In+1 =E−1{ckIni Sni
(
1+ γ Ini

)+ Ini } (20)

Rn+1 = F−1{βkIni +Rni } (21)

Now, suppose that Sn > 0, In > 0 and Rn > 0 and X , Y , Z satisfy all the conditions on
M-matrix which concludes that all the entries of the matrices D−1, E−1, F−1 are positive. So,
Sn+1 > 0, In+1 > 0 and Rn+1 > 0. Hence, by induction, the system (16)–(18) has a positive solution.
That is, the proposed numerical scheme preserves the positivity of the solution.
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5 Numerical Example and Simulations

In this experiment, the following initial conditions are supposed

S (x, 0)=
{
0.5x, 0≤ x< 0.5

0.5 (1−x) , 0.5≤ x≤ 1

I (x, 0)=
{
0.4x, 0≤ x< 0.5

0.4 (1−x) , 0.5≤ x≤ 1

Figure 1: (a) The spatio-temporal simulations results for susceptible population, (b) the spatio-
temporal simulations results for infected population, (c) the spatio-temporal simulations results
for recovered population, (d) the graphical simulations in 2-D plot for all sub-populations by
considering x= 1
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R (x, 0)=
{
0.1x, 0≤ x< 0.5

0.1 (1−x) , 0.5≤ x≤ 1

5.1 Disease Free State
For the disease free state we take the following values:

a= 0.5, μ= 0.5, δ = 0.05, b= 0.205, β = 0.09871, c= 0.380, γ = 0.0003, α = 0.854302.

Figure 2: (a) The spatio-temporal simulations results for susceptible population, (b) the spatio-
temporal simulations results for infected population, (c) the spatio-temporal simulations results
for recovered population, (d) the graphical simulations in 2-D plot for all sub-populations by
considering x= 1
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In the Fig. 1, we take the values of parameters in such a way that the value of reproductive
number is less than 1. The mesh graphs and combined 2-D plot of all sub-population model
are provided in Fig. 1. The SIR corona virus advection diffusion model is manifested two steady
states, virus free state and virus existence state. Since in Fig. 1, the value of reproductive number
is less than unity therefore model (1) demonstrates the state when virus in not present in the
population. Also we see that the state variables present in the system (1) are the population
densities. The graphical solutions depicted in the Fig. 1 indicate that the designed technique
sustains the positive solution of model (1) and validates the theorem of positivity. Also the
stability of virus free steady state of continuous model (1) is retained by designed technique which
is again demonstrated in Fig. 1.

5.2 Endemic State
For the endemic state we take the following values:

a= 0.5, μ= 0.5, δ = 0.05, b= 0.205, β = 0.09871, c= 0.580, γ = 0.0003, α = 0.854302.

Fig. 2 indicates the solution mesh graphs and combined two dimensional plot for the steady
state at which the virus exists in the population by using proposed technique. Again the positive
solution of system (1) is sustained by the upwind NSFD technique. As the values of parameters
describe that the value of reproductive quantity is greater than 1, so the corona virus is present
in the population and the advection diffusion system (1) possesses the virus persistent in the
population. The graphical behavior of all state variables by using proposed technique in the Fig. 2
depicts that the virus is persisted in the population. This shows that the underlying technique is
consistent with the continuous model (1).

6 Conclusion

In the current article, we have analyzed a mathematical model concerned with the novel
coronavirus disease and the existence and uniqueness of its solution in a closed and convex
subset of a banach space is also discussed. The prominent feature of our proposed model is
the combination of advection and diffusion in the model which makes the model more realistic
and comprehensive. Numerical solution of the proposed model is also computed with the help
of nonstandard finite difference scheme which preserves the structural properties of the proposed
continuous model. To support the validity of our numerical scheme, we have checked some of
its physical properties such as consistency, stability and positivity which is the most important
property in any population dynamical model. For positivity, we have used the M-matrix theory.
Numerical simulations play a vital role in the study of numerical analysis so, to check the
graphical behavior of solution, numerical simulation is also performed that verifies our results. We
can extend our work to two and three dimensions.
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