Open Access
ARTICLE
Prediction and Analysis of Vehicle Interior Road Noise Based on Mechanism and Data Series Modeling
1 State Key Laboratory of Vehicle Noise, Vibration and Harshness (NVH) and Safety Technology, Chongqing, 401120, China
2 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, China
3 Changan Auto Global R&D Center, Chongqing Changan Automobile Co., Ltd., Chongqing, 401120, China
* Corresponding Authors: Xiaoli Jia. Email: ; Haibo Huang. Email:
Sound & Vibration 2024, 58, 59-80. https://doi.org/10.32604/sv.2024.046247
Received 24 September 2023; Accepted 10 January 2024; Issue published 27 February 2024
Abstract
Currently, the inexorable trend toward the electrification of automobiles has heightened the prominence of road noise within overall vehicle noise. Consequently, an in-depth investigation into automobile road noise holds substantial practical importance. Previous research endeavors have predominantly centered on the formulation of mechanism models and data-driven models. While mechanism models offer robust controllability, their application encounters challenges in intricate analyses of vehicle body acoustic-vibration coupling, and the effective utilization of accumulated data remains elusive. In contrast, data-driven models exhibit efficient modeling capabilities and can assimilate conceptual vehicle knowledge, but they impose stringent requirements on both data quality and quantity. In response to these considerations, this paper introduces an innovative approach for predicting vehicle road noise by integrating mechanism-driven and data-driven methodologies. Specifically, a series model is devised, amalgamating mechanism analysis with data-driven techniques to predict vehicle interior noise. The simulation results from dynamic models serve as inputs to the data-driven model, ultimately generating outputs through the utilization of the Long Short-Term Memory with Autoencoder (AE-LSTM) architecture. The study subsequently undertakes a comparative analysis between different dynamic models and data-driven models, thereby validating the efficacy of the proposed series vehicle road noise prediction model. This series model, encapsulating the rigid-flexible coupling dynamic model and AE-LSTM series model, not only demonstrates heightened computational efficiency but also attains superior prediction accuracy.Keywords
Cite This Article
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.