Open Access iconOpen Access

ARTICLE

crossmark

Condition Monitoring of an Industrial Oil Pump Using a Learning Based Technique

Amin Ranjbar1, Amir Abolzafl Suratgar1,*, Saeed Shiry Ghidary2, Jafar Milimonfared3

1 Distributed and Intelligent Optimization Research Laboratory, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
2 Department of Computer Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran
3 Department of Electrical Engineering, Amirkabir University of Technology, Tehran, 1591634311, Iran

* Corresponding Author: Amir Abolzafl Suratgar. Email: email

Sound & Vibration 2020, 54(4), 257-267. https://doi.org/10.32604/sv.2020.05055

Abstract

This paper proposes an efficient learning based approach to detect the faults of an industrial oil pump. The proposed method uses the wavelet transform and genetic algorithm (GA) ensemble for an optimal feature extraction procedure. Optimal features, which are dominated through this method, can remarkably represent the mechanical faults in the damaged machine. For the aim of condition monitoring, we considered five common types of malfunctions such as casing distortion, cavitation, looseness, misalignment, and unbalanced mass that occur during the machine operation. The proposed technique can determine optimal wavelet parameters and suitable statistical functions to exploit excellent features via an appropriate distance criterion function. Moreover, our optimization algorithm chooses the most appropriate feature submatrix to improve the final accuracy in an iterative method. As a case study, the proposed algorithms are applied to experimental data gathered from an industrial heavy-duty oil pump installed in Arak Oil Refinery Company. The experimental results are very promising.

Keywords


Cite This Article

APA Style
Ranjbar, A., Suratgar, A.A., Ghidary, S.S., Milimonfared, J. (2020). Condition monitoring of an industrial oil pump using a learning based technique. Sound & Vibration, 54(4), 257-267. https://doi.org/10.32604/sv.2020.05055
Vancouver Style
Ranjbar A, Suratgar AA, Ghidary SS, Milimonfared J. Condition monitoring of an industrial oil pump using a learning based technique. Sound Vib . 2020;54(4):257-267 https://doi.org/10.32604/sv.2020.05055
IEEE Style
A. Ranjbar, A.A. Suratgar, S.S. Ghidary, and J. Milimonfared, “Condition Monitoring of an Industrial Oil Pump Using a Learning Based Technique,” Sound Vib. , vol. 54, no. 4, pp. 257-267, 2020. https://doi.org/10.32604/sv.2020.05055



cc Copyright © 2020 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 2399

    View

  • 1414

    Download

  • 0

    Like

Share Link