Home / Journals / SDHM / Vol.18, No.1, 2024
Special Issues
cover

On the Cover


Emerging Trends in Damage Tolerance Assessment" delves into the revolutionary intersection of smart materials and self-repairable structures in engineering. This review illuminates the evolution from traditional damage assessment methods to innovative, autonomous systems capable of immediate damage identification and self-repair. It underscores the transformative potential of integrating these technologies, highlighting their role in redefining the realms of efficiency, safety, and resilience in various industries. This piece reflects on the challenges and future prospects, emphasizing the need for continued innovation in manufacturing and data strategies to fully harness this synergy.

View this paper

  • Open AccessOpen Access

    REVIEW

    Emerging Trends in Damage Tolerance Assessment: A Review of Smart Materials and Self-Repairable Structures

    Ali Akbar Firoozi1,*, Ali Asghar Firoozi2
    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 1-18, 2024, DOI:10.32604/sdhm.2023.044573 - 11 January 2024
    (This article belongs to the Special Issue: Health Monitoring and Rapid Evaluation of Infrastructures)
    Abstract The discipline of damage tolerance assessment has experienced significant advancements due to the emergence of smart materials and self-repairable structures. This review offers a comprehensive look into both traditional and innovative methodologies employed in damage tolerance assessment. After a detailed exploration of damage tolerance concepts and their historical progression, the review juxtaposes the proven techniques of damage assessment with the cutting-edge innovations brought about by smart materials and self-repairable structures. The subsequent sections delve into the synergistic integration of smart materials with self-repairable structures, marking a pivotal stride in damage tolerance by establishing an autonomous More >

  • Open AccessOpen Access

    ARTICLE

    Numerical Simulations of the Flow Field around a Cylindrical Lightning Rod

    Wei Guo1, Yanliang Liu1, Xuqiang Wang1, Jiazheng Meng2, Mengqin Hu2, Bo He2,*
    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 19-35, 2024, DOI:10.32604/sdhm.2023.042944 - 11 January 2024
    Abstract As an important lightning protection device in substations, lightning rods are susceptible to vibration and potential structural damage under wind loads. In order to understand their vibration mechanism, it is necessary to conduct flow analysis. In this study, numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ω model. The flow patterns in different segments of the lightning rod at the same reference wind speed (wind speed at a height of 10 m) and the flow patterns in the same segment at different reference wind… More >

  • Open AccessOpen Access

    ARTICLE

    Fault Diagnosis Method of Rolling Bearing Based on ESGMD-CC and AFSA-ELM

    Jiajie He1,2, Fuzheng Liu3, Xiangyi Geng3, Xifeng Liang1, Faye Zhang3,*, Mingshun Jiang3
    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 37-54, 2024, DOI:10.32604/sdhm.2023.029428 - 11 January 2024
    Abstract Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods, making it challenging to ensure the fault diagnosis accuracy and reliability. A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator (ESGMD-CC) and artificial fish swarm algorithm (AFSA) optimized extreme learning machine (ELM) is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis. Firstly, SGMD decomposes the raw vibration signal into multiple Symplectic geometry components (SGCs). Secondly, the More >

  • Open AccessOpen Access

    ARTICLE

    Assessment of the Influence of Tunnel Settlement on Operational Performance of Subway Vehicles

    Gang Niu1,2, Guangwei Zhang1, Zhaoyang Jin1, Wei Zhang3,*, Xiang Liu3
    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 55-71, 2024, DOI:10.32604/sdhm.2023.044832 - 11 January 2024
    (This article belongs to the Special Issue: Health Monitoring and Rapid Evaluation of Infrastructures)
    Abstract In the realm of subway shield tunnel operations, the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern. This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system. The model integrates the geometric deformations of the track, attributed to settlement, as track irregularities. A novel “cyclic model” algorithm was employed to enhance computational efficiency without compromising on precision, a claim that was rigorously validated. The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas. The More >

  • Open AccessOpen Access

    ARTICLE

    A Novel Method for Aging Prediction of Railway Catenary Based on Improved Kalman Filter

    Jie Li1,3,*, Rongwen Wang2, Yongtao Hu1,3, Jinjun Li1
    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 73-90, 2024, DOI:10.32604/sdhm.2023.044023 - 11 January 2024
    Abstract The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains. However, in real-world scenarios, accurate predictions are challenging due to various interferences. This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter (KF). The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments. By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect… More >

    Graphic Abstract

    A Novel Method for Aging Prediction of Railway Catenary Based on Improved Kalman Filter

Per Page:

Share Link