Table of Content

Open Access iconOpen Access

ARTICLE

crossmark

Comparative Study on Tool Fault Diagnosis Methods Using Vibration Signals and Cutting Force Signals by Machine Learning Technique

Suhas S. Aralikatti1, K. N. Ravikumar1, Hemantha Kumar1,*, H. Shivananda Nayaka1, V. Sugumaran2

1 National Institute of Technology Karnataka, Mangaluru, 575 025, India
2 Vellore Institute of Technology University, Chennai, 600 127, India

* Corresponding Author: Hemantha Kumar. Email: email

Structural Durability & Health Monitoring 2020, 14(2), 127-145. https://doi.org/10.32604/sdhm.2020.07595

Abstract

The state of cutting tool determines the quality of surface produced on the machined parts. A faulty tool produces poor surface, inaccurate geometry and non-economic production. Thus, it is necessary to monitor tool condition for a machining process to have superior quality and economic production. In the present study, fault classification of single point cutting tool for hard turning has been carried out by employing machine learning technique. Cutting force and vibration signals were acquired to monitor tool condition during machining. A set of four tooling conditions namely healthy, worn flank, broken insert and extended tool overhang have been considered for the study. The machine learning technique was applied to both vibration and cutting force signals. Discrete wavelet features of the signals have been extracted using discrete wavelet transformation (DWT). This transformation represents a large dataset into approximation coefficients which contain the most useful information of the dataset. Significant features, among features extracted, were selected using J48 decision tree technique. Classification of tool conditions was carried out using Naïve Bayes algorithm. A 10 fold cross validation was incorporated to test the validity of classifier. A comparison of performance of classifier was made between cutting force and vibration signal to choose the best signal acquisition method in classifying tool fault conditions using machine learning technique.

Keywords


Cite This Article

APA Style
Aralikatti, S.S., Ravikumar, K.N., Kumar, H., Nayaka, H.S., Sugumaran, V. (2020). Comparative study on tool fault diagnosis methods using vibration signals and cutting force signals by machine learning technique. Structural Durability & Health Monitoring, 14(2), 127-145. https://doi.org/10.32604/sdhm.2020.07595
Vancouver Style
Aralikatti SS, Ravikumar KN, Kumar H, Nayaka HS, Sugumaran V. Comparative study on tool fault diagnosis methods using vibration signals and cutting force signals by machine learning technique. Structural Durability Health Monit . 2020;14(2):127-145 https://doi.org/10.32604/sdhm.2020.07595
IEEE Style
S.S. Aralikatti, K.N. Ravikumar, H. Kumar, H.S. Nayaka, and V. Sugumaran, “Comparative Study on Tool Fault Diagnosis Methods Using Vibration Signals and Cutting Force Signals by Machine Learning Technique,” Structural Durability Health Monit. , vol. 14, no. 2, pp. 127-145, 2020. https://doi.org/10.32604/sdhm.2020.07595

Citations




cc Copyright © 2020 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 4234

    View

  • 3196

    Download

  • 2

    Like

Share Link