Open Access
ARTICLE
Approximate solution of the fractional differential equation via the natural decomposition method
1 Department of Mathematical Science, College of Science, Princess Nourah bint Abdulrahman University, Saudi Arabia
2 Department of Basic Science, Faculty of Engineering, Sinai University, Ismailia, Egypt
* Corresponding Authors: Areej Almuneef (), Ahmed Eissa Hagag (
)
Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 2023, 39(4), 1-8. https://doi.org/10.23967/j.rimni.2023.10.008
Accepted 25 October 2023; Issue published 17 November 2023
Abstract
In today’s world, analyzing nonlinear occurrences related to physical phenomena is a hot topic. The main goal of this research is to use the natural decomposition method (NDM) of fractional order to find an approximate solution to the fractional clannish random walker’s parabolic (CRWP) equation. The proposed method gives approximate solutions that are exceptionally near the exact solution without the complication that numerous other techniques imply. Banach’s fixed-point theory is used to investigate the anticipated issue’s convergence analysis and uniqueness theorem. To ensure that the suggested technique is trustworthy and precise, numerical simulations were conducted. The results are shown in the graphs and tables. When comparing the proposed scheme’s solution to the actual solutions, it becomes clear that the scheme is efficient, systematic, and very precise when dealing with nonlinear complex phenomena.Keywords
Cite This Article
Copyright © 2023 The Author(s). Published by Tech Science Press.This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Download PDF
Downloads
Citation Tools