Table of Content

Open Access iconOpen Access

ARTICLE

Optimization of titanium cranial implant designs using generalized reduced gradient method, analysis of finite elements, and artificial neural networks

by

1 Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, Mexico
2 Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Unidad Querétaro, Libramiento Norponiente #2000, Fraccionamiento Real de Juriquilla, 76230 Santiago de Querétaro, Mexico
3 Maestría en Innovación Aplicada, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, Mexico
4 Departamento de Ingeniería Industrial, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, Mexico
5 Departamento de Diseño, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, Mexico
6 Doctorado en Ciencias de la Ingeniería, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, Mexico

Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 2022, 38(2), 1-16. https://doi.org/10.23967/j.rimni.2022.06.004

Abstract

When cranial bone needs to be removed or lost, subsequent reconstruction of the defect is necessary to protect the underlying brain, correct aesthetic deformities, or both. Cranioplasty surgical procedures are performed to correct the skull defects requiring reconstruction of form and function. Personalized cranial implants can repair severe injuries to the skull can be done through This study presents the optimization of cranial titanium implants. A total of sixty different models were subjected to a simulation by Finite Element Analysis (FEA) applying the mechanical properties of a grade 5 titanium alloy (Ti6Al4V) implant material. The material was subjected to intracranial pressure (ICP) conditions, with a typical range (10 mm Hg) and twelve fixation points in the boundary conditions. An artificial neural network (ANN) was created to connect the designs, obtaining maximum displacements. Optimal designs were obtained using a generalized reduced gradient that minimizes the amount of material, maintaining as a restriction a maximum displacement of 0.1 mm for the 5th to 95t percentiles, which represent the group of individuals under study.

Keywords


Cite This Article

APA Style
Martínez-Valencia, M.I., Navarro, C.H., Vázquez-López, J.A., Hernández-Arellano, J., Jiménez-García, J.A. et al. (2022). Optimization of titanium cranial implant designs using generalized reduced gradient method, analysis of finite elements, and artificial neural networks. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 38(2), 1-16. https://doi.org/10.23967/j.rimni.2022.06.004
Vancouver Style
Martínez-Valencia MI, Navarro CH, Vázquez-López JA, Hernández-Arellano J, Jiménez-García JA, Díaz-León J. Optimization of titanium cranial implant designs using generalized reduced gradient method, analysis of finite elements, and artificial neural networks. Rev int métodos numér cálc diseño ing. 2022;38(2):1-16 https://doi.org/10.23967/j.rimni.2022.06.004
IEEE Style
M.I. Martínez-Valencia, C.H. Navarro, J.A. Vázquez-López, J. Hernández-Arellano, J.A. Jiménez-García, and J. Díaz-León, “Optimization of titanium cranial implant designs using generalized reduced gradient method, analysis of finite elements, and artificial neural networks,” Rev. int. métodos numér. cálc. diseño ing., vol. 38, no. 2, pp. 1-16, 2022. https://doi.org/10.23967/j.rimni.2022.06.004



cc Copyright © 2022 The Author(s). Published by Tech Science Press.
This work is licensed under a Creative Commons Attribution 4.0 International License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • 50

    View

  • 39

    Download

  • 0

    Like

Share Link