Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,788)
  • Open Access

    ARTICLE

    A genetic variant study of bortezomib-induced peripheral neuropathy in Chinese multiple myeloma patients

    YAN ZHANG, HEYANG ZHANG, JING WANG, XIN WEI, YI QU, FENG XU, LIJUN ZHANG*

    Oncology Research, Vol., , DOI:10.32604/or.2023.043922

    Abstract Background: Bortezomib results in peripheral neuropathy (PN) in approximately 50% of patients, during multiple myeloma (MM) treatment, a complication known as Bortezomib-induced peripheral neuropathy (BIPN). The drug response varies among individuals. Genetic factor may play an important role in BIPN. Methods: A next-generation sequencing (NGS) panel containing 1659 targets from 233 genes was used to identify risk variants for developing BIPN in 204 MM patients who received bortezomib therapy. mRNA expression of MTHFR and ALDH1A1 in 62 peripheral blood samples was detected by real-time quantitative PCR (RT-qPCR). Serum homocysteine (Hcy) levels were detected in 40 samples by chemiluminescent microparticle immunoassay… More > Graphic Abstract

    A genetic variant study of bortezomib-induced peripheral neuropathy in Chinese multiple myeloma patients

  • Open Access

    ARTICLE

    Deep-Ensemble Learning Method for Solar Resource Assessment of Complex Terrain Landscapes

    Lifeng Li1, Zaimin Yang1, Xiongping Yang1, Jiaming Li2, Qianyufan Zhou3,*, Ping Yang3

    Energy Engineering, Vol., , DOI:10.32604/ee.2023.046447

    Abstract As the global demand for renewable energy grows, solar energy is gaining attention as a clean, sustainable energy source. Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants. This study proposes an integrated deep learning-based photovoltaic resource assessment method. Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time. The proposed method combines the random forest, gated recurrent unit, and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment. The proposed method has strong adaptability and high accuracy even in the… More >

  • Open Access

    ARTICLE

    Desired Dynamic Equation for Primary Frequency Modulation Control of Gas Turbines

    Aimin Gao1, Xiaobo Cui2,*, Guoqiang Yu1, Jianjun Shu1, Tianhai Zhang1

    Energy Engineering, Vol., , DOI:10.32604/ee.2023.045805

    Abstract Gas turbines play core roles in clean energy supply and the construction of comprehensive energy systems. The control performance of primary frequency modulation of gas turbines has a great impact on the frequency control of the power grid. However, there are some control difficulties in the primary frequency modulation control of gas turbines, such as the coupling effect of the fuel control loop and speed control loop, slow tracking speed, and so on. To relieve the abovementioned difficulties, a control strategy based on the desired dynamic equation proportional integral (DDE-PI) is proposed in this paper. Based on the parameter stability… More >

  • Open Access

    ARTICLE

    Investigation of Projectile Impact Behaviors of Graphene Aerogel Using Molecular Dynamics Simulations

    Xinyu Zhang1, Wenjie Xia2, Yang Wang3,4, Liang Wang1,*, Xiaofeng Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.046922

    Abstract Graphene aerogel (GA), as a novel solid material, has shown great potential in engineering applications due to its unique mechanical properties. In this study, the mechanical performance of GA under high-velocity projectile impacts is thoroughly investigated using full-atomic molecular dynamics (MD) simulations. The study results show that the porous structure and density are key factors determining the mechanical response of GA under impact loading. Specifically, the impact-induced penetration of the projectile leads to the collapse of the pore structure, causing stretching and subsequent rupture of covalent bonds in graphene sheets. Moreover, the effects of temperature on the mechanical performance of… More >

  • Open Access

    ARTICLE

    Prediction of Ground Vibration Induced by Rock Blasting Based on Optimized Support Vector Regression Models

    Yifan Huang1, Zikang Zhou1,2, Mingyu Li1, Xuedong Luo1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2024.045947

    Abstract Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management. In this study, Tuna Swarm Optimization (TSO), Whale Optimization Algorithm (WOA), and Cuckoo Search (CS) were used to optimize two hyperparameters in support vector regression (SVR). Based on these methods, three hybrid models to predict peak particle velocity (PPV) for bench blasting were developed. Eighty-eight samples were collected to establish the PPV database, eight initial blasting parameters were chosen as input parameters for the prediction model, and the PPV was the output parameter. As predictive performance evaluation indicators, the coefficient of determination (R2), root mean square… More >

  • Open Access

    ARTICLE

    DGConv: A Novel Convolutional Neural Network Approach for Weld Seam Depth Image Detection

    Pengchao Li1,2,3,*, Fang Xu1,2,3,4, Jintao Wang1,2, Haibing Guo4, Mingmin Liu4, Zhenjun Du4

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.047057

    Abstract We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations. Initially, to enhance the capability of deep neural networks in extracting geometric attributes from depth images, we developed a novel deep geometric convolution operator (DGConv). DGConv is utilized to construct a deep local geometric feature extraction module, facilitating a more comprehensive exploration of the intrinsic geometric information within depth images. Secondly, we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network (FCN8) to establish a high-performance deep neural network algorithm… More >

  • Open Access

    ARTICLE

    Attention Guided Multi Scale Feature Fusion Network for Automatic Prostate Segmentation

    Yuchun Li1,4, Mengxing Huang1,*, Yu Zhang2, Zhiming Bai3

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.046883

    Abstract The precise and automatic segmentation of prostate magnetic resonance imaging (MRI) images is vital for assisting doctors in diagnosing prostate diseases. In recent years, many advanced methods have been applied to prostate segmentation, but due to the variability caused by prostate diseases, automatic segmentation of the prostate presents significant challenges. In this paper, we propose an attention-guided multi-scale feature fusion network (AGMSF-Net) to segment prostate MRI images. We propose an attention mechanism for extracting multi-scale features, and introduce a 3D transformer module to enhance global feature representation by adding it during the transition phase from encoder to decoder. In the… More >

  • Open Access

    ARTICLE

    Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems

    Sang-min Lee, Namgi Kim*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.046346

    Abstract Recommendation Information Systems (RIS) are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet. Graph Convolution Network (GCN) algorithms have been employed to implement the RIS efficiently. However, the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process. To address this issue, we propose a Weighted Forwarding method using the GCN (WF-GCN) algorithm. The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning. By applying the WF-GCN… More >

  • Open Access

    ARTICLE

    Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence

    Ali Hamid Farea1,*, Omar H. Alhazmi1, Kerem Kucuk2

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.045794

    Abstract While emerging technologies such as the Internet of Things (IoT) have many benefits, they also pose considerable security challenges that require innovative solutions, including those based on artificial intelligence (AI), given that these techniques are increasingly being used by malicious actors to compromise IoT systems. Although an ample body of research focusing on conventional AI methods exists, there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures. To contribute to this nascent research stream, a novel AI-driven security system denoted as “AI2AI” is presented in this work. AI2AI employs AI techniques to… More >

  • Open Access

    ARTICLE

    Detecting APT-Exploited Processes through Semantic Fusion and Interaction Prediction

    Bin Luo1,2,3, Liangguo Chen1,2,3, Shuhua Ruan1,2,3,*, Yonggang Luo2,3,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.045739

    Abstract Considering the stealthiness and persistence of Advanced Persistent Threats (APTs), system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host. Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks, and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection, which requires lots of manual efforts to locate attack entities. This paper proposes an APT-exploited process detection approach called ThreatSniffer, which constructs the benign provenance graph from attack-free audit logs, fits normal system entity… More >

Displaying 631-640 on page 64 of 2788. Per Page