Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,568)
  • Open Access

    ARTICLE

    A Time Series Intrusion Detection Method Based on SSAE, TCN and Bi-LSTM

    Zhenxiang He*, Xunxi Wang, Chunwei Li

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2023.046607

    Abstract In the fast-evolving landscape of digital networks, the incidence of network intrusions has escalated alarmingly. Simultaneously, the crucial role of time series data in intrusion detection remains largely underappreciated, with most systems failing to capture the time-bound nuances of network traffic. This leads to compromised detection accuracy and overlooked temporal patterns. Addressing this gap, we introduce a novel SSAE-TCN-BiLSTM (STL) model that integrates time series analysis, significantly enhancing detection capabilities. Our approach reduces feature dimensionality with a Stacked Sparse Autoencoder (SSAE) and extracts temporally relevant features through a Temporal Convolutional Network (TCN) and Bidirectional Long Short-term Memory Network (Bi-LSTM). By… More >

  • Open Access

    REVIEW

    Carbon Monoxide Modulates Auxin Transport and Nitric Oxide Signaling in Plants under Iron Deficiency Stress

    Kaiyue Hong1,2, Yasmina Radani2, Waqas Ahmad2, Ping Li3, Yuming Luo1,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.046389

    Abstract Carbon monoxide (CO) and nitric oxide (NO) are signal molecules that enhance plant adaptation to environmental stimuli. Auxin is an essential phytohormone for plant growth and development. CO and NO play crucial roles in modulating the plant’s response to iron deficiency. Iron deficiency leads to an increase in the activity of heme oxygenase (HO) and the subsequent generation of CO. Additionally, it alters the polar subcellular distribution of Pin-Formed 1 (PIN1) proteins, resulting in enhanced auxin transport. This alteration, in turn, leads to an increase in NO accumulation. Furthermore, iron deficiency enhances the activity of ferric chelate reductase (FCR), as… More >

  • Open Access

    ARTICLE

    Variation Characteristics of Root Traits of Different Alfalfa Cultivars under Saline-Alkaline Stress and their Relationship with Soil Environmental Factors

    Tian-Jiao Wei1, Guang Li1, Yan-Ru Cui1, Jiao Xie1, Xing-Ai Gao1, Xing Teng1, Xin-Ying Zhao1, Fa-Chun Guan1,*, Zheng-Wei Liang2,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.046078

    Abstract Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield. It is of great significance to study the key soil environmental factors affecting plant root traits to reveal the adaptation strategies of plants to saline-alkaline-stressed soil environments. In this study, the root biomass, root morphological parameters and root mineral nutrient content of two alfalfa cultivars with different sensitivities to alkaline stress were analyzed with black soil as the control group and the mixed saline-alkaline soil with a ratio of 7:3 between black soil and saline-alkaline soil as the saline-alkaline treatment… More >

  • Open Access

    ARTICLE

    The Effect of Soil Enzymes and Polysaccharides Secreted by the Roots of Salvia miltiorrhiza Bunge under Drought, High Temperature, and Nitrogen and Phosphorus Deficits

    Yong Qin1,2, Xiaoyu Li1,2, Yanhong Wu1,2, Hai Wang3, Guiqi Han1,2,3, Zhuyun Yan1,2,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.046075

    Abstract Root exudates serve as crucial mediators for information exchange between plants and soil, and are an important evolutionary mechanism for plants’ adaptation to environmental changes. In this study, 15 different abiotic stress models were established using various stress factors, including drought (D), high temperature (T), nitrogen defi- ciency (N), phosphorus deficiency (P), and their combinations. We investigated their effects on the seedling growth of Salvia miltiorrhiza Bunge and the activities of Solid-Urease (S-UE), Solid-Nitrite Reductase (S-NiR), Solid-Nitrate Reductase (S-NR), Solid-Phosphotransferase (S-PT), and Solid-Catalase (S-CAT), as well as the contents of polysaccharides in the culture medium. The results showed that the… More >

  • Open Access

    ARTICLE

    Silicon Mitigates Aluminum Toxicity of Tartary Buckwheat by Regulating Antioxidant Systems

    Anyin Qi1,#, Xiaonan Yan1,#, Yuqing Liu1,#, Qingchen Zeng1, Hang Yuan1, Huange Huang1, Chenggang Liang2, Dabing Xiang1, Liang Zou1, Lianxin Peng1, Gang Zhao1, Jingwei Huang1,*, Yan Wan1,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.045802

    Abstract Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheat growing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growth of tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated in many crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, and root volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At the same time, catalase (CAT) and ascorbate peroxidase activities,… More >

  • Open Access

    ARTICLE

    Identification and Molecular Characterization of the Alkaloid Biosynthesis Gene Family in Dendrobium catenatum

    Liping Yang1,#, Xin Wan2,3,#, Runyang Zhou1, Yingdan Yuan1,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.045389

    Abstract As one of the main active components of Dendrobium catenatum, alkaloids have high medicinal value. The physicochemical properties, conserved domains and motifs, phylogenetic analysis, and cis-acting elements of the gene family members in the alkaloid biosynthesis pathway of D. catenatum were analyzed by bioinformatics, and the expression of the genes in different years and tissues was analyzed by qRT-PCR. There are 16 gene families, including 25 genes, in the D. catenatum alkaloid biosynthesis pathway. The analysis of conserved domains and motifs showed that the types, quantities, and orders of domains and motifs were similar among members of the same family,… More >

  • Open Access

    ARTICLE

    Protein Disulfide Isomerase and Its Potential Function on Endoplasmic Reticulum Quality Control in Diatom Phaeodactylum tricornutum

    Yanhuan Lin1,#, Hua Du2,#, Zhitao Ye2, Shuqi Wang2, Zhen Wang2, Xiaojuan Liu2,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.044996

    Abstract PDI is a molecular chaperone and plays an important role in Endoplasmic Reticulum quality control (ERQC). PDI participates in the refolding of the misfolded/unfolded proteins to maintain cellular homeostasis under different stresses. However, bioinformatic characteristics and potential functions of PDIs in diatom Phaeodactylum tricornutum (Pt) are still unknown so far. Hence, the genome-wide characteristics of PtPDI proteins in P. tricornutum were first studied via bioinformatic and transcriptomic methods. 42 PtPDI genes were identified from the genome of P. tricornutum. The motif, protein structure, classification, number of introns, phylogenetic relationship, and the expression level of 42 PtPDI genes under the tunicamycin… More >

  • Open Access

    ARTICLE

    Effects of Heterologously Overexpressing PIP5K-Family Genes in Arabidopsis on Inflorescence Development

    Mingda Yin1,#, Rui Luo1,#, Tana Liang1, Qi Wen1, Xiaotian Liang1, Yanpeng Wen1, Xuemei Hu1, Zhiyan Wang1, Chang Gao1, Wenjing Ren1, Fenglan Huang1,2,3,4,5,*

    Phyton-International Journal of Experimental Botany, Vol., , DOI:10.32604/phyton.2023.031228

    Abstract Castor is one of the top 10 oil crops in the world and has extremely valuable uses. Castor inflorescences directly affect yield, so the study of inflorescence development is very important in increasing castor yield. Our previous studies have shown that the PIP5K gene family (PIP5Ks) is associated with inflorescence development. In this study, to determine the function of each PIP5K gene in castor, a female Lm-type castor line, aLmAB2, was used to determine the relative expression levels of the PIP5Ks in castor inflorescences. Six PIP5K genes were heterologously overexpressed in Arabidopsis thaliana, the relative expression of each gene and… More >

  • Open Access

    ARTICLE

    Synthesis and Characterization of Phenyl Camellia oleifera Seed Oil Ester Plasticizing PVC

    Wenqing Xiao1,#, Yuhang Liu2,#, Yuxin He1, Qiaoguang Li1,*, Yongquan Li3,*

    Journal of Renewable Materials, Vol., , DOI:10.32604/jrm.2023.046780

    Abstract Plasticizers are essential additives in the processing of polyvinyl chloride (PVC), with phthalate plasticizers being widely used. However, these conventional plasticizers have been shown to be harmful to human health and environmentally unfriendly, necessitating the exploration of eco-friendly bio-based alternatives. In this study, Camellia oleifera seed oil, a specialty resource in China, was utilized as a raw material and reacted with 4,4′-Methylenebis (N,N-diglycidylaniline) (AG-80) to synthesize Phenyl Camellia seed Oil Ester (PCSOE). PCSOE was employed as a plasticizer to prepare modified PVC films with varying concentrations, with the conventional plasticizer dioctyl phthalate (DOP) serving as a control. Experimental results demonstrate… More >

  • Open Access

    ARTICLE

    IoT Task Offloading in Edge Computing Using Non-Cooperative Game Theory for Healthcare Systems

    Dinesh Mavaluru1,*, Chettupally Anil Carie2, Ahmed I. Alutaibi3, Satish Anamalamudi2, Bayapa Reddy Narapureddy4, Murali Krishna Enduri2, Md Ezaz Ahmed1

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.045277

    Abstract In this paper, we present a comprehensive system model for Industrial Internet of Things (IIoT) networks empowered by Non-Orthogonal Multiple Access (NOMA) and Mobile Edge Computing (MEC) technologies. The network comprises essential components such as base stations, edge servers, and numerous IIoT devices characterized by limited energy and computing capacities. The central challenge addressed is the optimization of resource allocation and task distribution while adhering to stringent queueing delay constraints and minimizing overall energy consumption. The system operates in discrete time slots and employs a quasi-static approach, with a specific focus on the complexities of task partitioning and the management… More >

Displaying 611-620 on page 62 of 2568. Per Page