Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,212)
  • Open Access

    ARTICLE

    A Time-Efficient and Exploratory Algorithm for the Rectangle Packing Problem

    Mohammad Bozorgi1, Morteza Mohammadi Zanjireh1,*, Mahdi Bahaghighat1, Qin Xin2

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 885-898, 2022, DOI:10.32604/iasc.2022.016075

    Abstract Today, resource waste is considered as one of the most important challenges in different industries. In this regard, the Rectangle Packing Problem (RPP) can affect noticeably both time and design issues in businesses. In this study, the main objective is to create a set of non-overlapping rectangles so that they have specific dimensions within a rectangular plate with a specified width and an unlimited height. The ensued challenge is an NP-complete problem. NP-complete problem, any of a class of computational problems that still there are no efficient solution for them. Most substantial computer-science problems such as the traveling salesman problem,… More >

  • Open Access

    ARTICLE

    Quantifying Contribution of DER-Integrated EV Parking Lots to Reliability of Power Distribution Systems

    Bo Zeng*, Yixian Liu, Yangfan Luo

    Energy Engineering, Vol.118, No.6, pp. 1713-1728, 2021, DOI:10.32604/EE.2021.016678

    Abstract In the future smart cities, parking lots (PLs) can accommodate hundreds of electric vehicles (EVs) at the same time. This trend creates an opportunity for PLs to serve as a potential flexibility resource, considering growing penetration of EVs and integration of distributed energy resources DER (such as photovoltaic and energy storages). Given this background, this paper proposes a comprehensive evaluation framework to investigate the potential role of DER-integrated PLs (DPL) with the capability of vehicle-to-grid (V2G) in improving the reliability of the distribution network. For this aim, first, an overview for the distribution system with DPLs is provided. Then, a… More >

  • Open Access

    ARTICLE

    Electricity Demand Time Series Forecasting Based on Empirical Mode Decomposition and Long Short-Term Memory

    Saman Taheri1, Behnam Talebjedi2,*, Timo Laukkanen2

    Energy Engineering, Vol.118, No.6, pp. 1577-1594, 2021, DOI:10.32604/EE.2021.017795

    Abstract Load forecasting is critical for a variety of applications in modern energy systems. Nonetheless, forecasting is a difficult task because electricity load profiles are tied with uncertain, non-linear, and non-stationary signals. To address these issues, long short-term memory (LSTM), a machine learning algorithm capable of learning temporal dependencies, has been extensively integrated into load forecasting in recent years. To further increase the effectiveness of using LSTM for demand forecasting, this paper proposes a hybrid prediction model that incorporates LSTM with empirical mode decomposition (EMD). EMD algorithm breaks down a load time-series data into several sub-series called intrinsic mode functions (IMFs).… More >

  • Open Access

    ARTICLE

    A Study on Heat Transfer Enhancement through Various Nanofluids in a Square Cavity with Localized Heating

    Sheikh Hassan1, Didarul Ahasan Redwan1, Md. Mamun Molla1,2,*, Sharaban Thohura3, M. Abu Taher4, Sadia Siddiqa5

    Energy Engineering, Vol.118, No.6, pp. 1659-1679, 2021, DOI:10.32604/EE.2021.017657

    Abstract A two-dimensional (2D) laminar flow of nanofluids confined within a square cavity having localized heat source at the bottom wall has been investigated. The governing Navier–Stokes and energy equations have been non dimensionalized using the appropriate non dimensional variables and then numerically solved using finite volume method. The flow was controlled by a range of parameters such as Rayleigh number, length of heat source and nanoparticle volume fraction. The numerical results are represented in terms of isotherms, streamlines, velocity and temperature distribution as well as the local and average rate of heat transfer. A comparative study has been conducted for… More >

  • Open Access

    ARTICLE

    Comprehensive Study, Design and Economic Feasibility Analysis of Solar PV Powered Water Pumping System

    K. Karthick1,*, K. Jaiganesh2, S. Kavaskar3

    Energy Engineering, Vol.118, No.6, pp. 1887-1904, 2021, DOI:10.32604/EE.2021.017563

    Abstract The energy efficient product can be operated with longer duration. They offer wonderful solutions compared to other conventional water pumping system as it needs less maintenance, simple in installation, zero fuel cost, longer operating life, highly reliable and free from production of greenhouse gases. In this paper we analyzed the different topologies of DC–DC converter in terms of their operating region of MPPT, quality of input and output currents. We discussed the MPPT algorithms to address partial shading effects in SPV array, present state of the technology, factors affecting the performance of the system, efficiency improvements and identified the research… More >

  • Open Access

    ARTICLE

    Optimal Configuration of an Off-Grid Hybrid Wind-Hydrogen Energy System: Comparison of Two Systems

    Zekun Wang1,2,4, Yan Jia1,2,3,*, Yingjian Yang1, Chang Cai4,5, Yinpeng Chen1

    Energy Engineering, Vol.118, No.6, pp. 1641-1658, 2021, DOI:10.32604/EE.2021.017464

    Abstract Due to the uncertainty of renewable energy power generation and the non-linearity of load demand, it becomes complicated to determine the capacity of each device in hybrid renewable energy power generation systems. This work aims to optimize the capacity of two types of the off-grid hybrid wind-hydrogen energy system. We considered the maximum profit of the system and the minimum loss of power supply probability as optimization goals. Firstly, we established steady-state models of the wind turbine, alkaline electrolyzer, lead-acid battery, and proton exchange membrane fuel cell in matrix laboratory software to optimize the capacity. Secondly, we analyzed the operating… More >

  • Open Access

    ARTICLE

    The Effect of Injected Air Bubble Size on the Thermal Performance of a Vertical Shell and Helical Coiled Tube Heat Exchanger

    Saif S. Hasan1, Ali Sh. Baqir1, Hameed B. Mahood2,*

    Energy Engineering, Vol.118, No.6, pp. 1595-1609, 2021, DOI:10.32604/EE.2021.017433

    Abstract In the present study, the effect of injecting air bubble size on the thermal performance of a vertical counter-current shell and coiled tube heat exchanger is experimentally investigated. The experiments were accomplished in a cylindrical shape heat exchanger with a 50 cm height and 15 cm outer diameter. Copper coil with 3.939 m equivalent length and 0.6 cm outer diameter was used to carry the hot fluid (water). Four different cold fluid (shell side) flow rates under laminar flow conditions (316 ≤ Re ≤ 1223), constant hot (coil side) flow rate fluid rates , four different injected air flow rates , invariant… More >

  • Open Access

    ARTICLE

    Investigation of Plans Shape and Glazing Percentage for the Energy Efficiency of Residential Buildings

    Tayyebeh Yazarlou*, Mohammad Djavad Saghafi

    Energy Engineering, Vol.118, No.6, pp. 1783-1797, 2021, DOI:10.32604/EE.2021.017282

    Abstract The room's plan shape, the area of the window, and the impact of the materials are significant parameters in determining the thermal needs of buildings. In traditional houses of the hot and dry climate of Iran, the plan shape of the room, the ratio of the window area to the floor area, and the comparison between traditional and prevalent materials have been less studied. This study investigated the thermal performance of seven different models of the plan shape, five different ratios of window area to plan area, and three material structures in a selected room of Yazd City using EnergyPlus… More >

  • Open Access

    ARTICLE

    Modelling and Optimal Design of Hybrid Power System Photovoltaic/Solid Oxide Fuel Cell for a Mediterranean City

    Bachir Melzi1, Nesrine Kefif2, Mamdouh El Haj Assad3,*, Haleh Delnava4, Abdulkadir Hamid5

    Energy Engineering, Vol.118, No.6, pp. 1767-1781, 2021, DOI:10.32604/EE.2021.017270

    Abstract This work presents a hybrid power system consisting of photovoltaic and solid oxide fuel cell (PV-SOFC) for electricity production and hydrogen production. The simulation of this hybrid system is adjusted for Bou-Zedjar city in north Algeria. Homer software was used for this simulation to calculate the power output and the total net present cost. The method used depends on the annual average monthly values of clearness index and radiation for which the energy contributions are determined for each component of PV/SOFC hybrid system. The economic study is more important criterion in the proposed hybrid system, and the results show that… More >

  • Open Access

    ARTICLE

    Effect of Dust and Shadow on Performance of Solar Photovoltaic Modules: Experimental Analysis

    Ramkiran Bhallamudi1,2, Sudhakar Kumarasamy3,4,5, Chinnayan Karuppaiyah Sundarabalan1,*

    Energy Engineering, Vol.118, No.6, pp. 1827-1838, 2021, DOI:10.32604/EE.2021.016798

    Abstract This study presents an experimental performance of a solar photovoltaic module under clean, dust, and shadow conditions. It is found that there is a significant decrease in electrical power produced (40% in the case of dust panels and 80% in the case of shadow panels) and a decrease in efficiency of around 6% in the case with dust and 9% in the case with the shadow, as compared to the clean panel. From the results, it is clear that there is a substantial effect of a partial shadow than dust on the performance of the solar panel. This is due… More >

Displaying 10821-10830 on page 1083 of 22212. Per Page