Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    Multiple Pedestrian Detection and Tracking in Night Vision Surveillance Systems

    Ali Raza1, Samia Allaoua Chelloug2,*, Mohammed Hamad Alatiyyah3, Ahmad Jalal1, Jeongmin Park4

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3275-3289, 2023, DOI:10.32604/cmc.2023.029719 - 31 March 2023

    Abstract Pedestrian detection and tracking are vital elements of today’s surveillance systems, which make daily life safe for humans. Thus, human detection and visualization have become essential inventions in the field of computer vision. Hence, developing a surveillance system with multiple object recognition and tracking, especially in low light and night-time, is still challenging. Therefore, we propose a novel system based on machine learning and image processing to provide an efficient surveillance system for pedestrian detection and tracking at night. In particular, we propose a system that tackles a two-fold problem by detecting multiple pedestrians in… More >

  • Open Access

    ARTICLE

    Delivery Invoice Information Classification System for Joint Courier Logistics Infrastructure

    Youngmin Kim1, Sunwoo Hwang2, Jaemin Park1, Joouk Kim2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3027-3044, 2023, DOI:10.32604/cmc.2023.027877 - 31 March 2023

    Abstract With the growth of the online market, demand for logistics and courier cargo is increasing rapidly. Accordingly, in the case of urban areas, road congestion and environmental problems due to cargo vehicles are mainly occurring. The joint courier logistics system, a plan to solve this problem, aims to establish an efficient logistics transportation system by utilizing one joint logistics delivery terminal by several logistics and delivery companies. However, several courier companies use different types of courier invoices. Such a system has a problem of information data transmission interruption. Therefore, the data processing process was systematically More >

  • Open Access

    ARTICLE

    Deep Consensus Network for Recycling Waste Detection in Smart Cities

    Manar Ahmed Hamza1,*, Hanan Abdullah Mengash2, Noha Negm3, Radwa Marzouk2, Abdelwahed Motwakel1, Abu Sarwar Zamani1

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4191-4205, 2023, DOI:10.32604/cmc.2023.027050 - 31 March 2023

    Abstract Recently, urbanization becomes a major concern for developing as well as developed countries. Owing to the increased urbanization, one of the important challenging issues in smart cities is waste management. So, automated waste detection and classification model becomes necessary for the smart city and to accomplish better recyclable waste management. Effective recycling of waste offers the chance of reducing the quantity of waste disposed to the land fill by minimizing the requirement of collecting raw materials. This study develops a novel Deep Consensus Network with Whale Optimization Algorithm for Recycling Waste Object Detection (DCNWO-RWOD) in… More >

  • Open Access

    ARTICLE

    Bayesian Deep Learning Enabled Sentiment Analysis on Web Intelligence Applications

    Abeer D. Algarni*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3399-3412, 2023, DOI:10.32604/cmc.2023.026687 - 31 March 2023

    Abstract In recent times, web intelligence (WI) has become a hot research topic, which utilizes Artificial Intelligence (AI) and advanced information technologies on the Web and Internet. The users post reviews on social media and are employed for sentiment analysis (SA), which acts as feedback to business people and government. Proper SA on the reviews helps to enhance the quality of the services and products, however, web intelligence techniques are needed to raise the company profit and user fulfillment. With this motivation, this article introduces a new modified pigeon inspired optimization based feature selection (MPIO-FS) with… More >

  • Open Access

    ARTICLE

    Video Frame Prediction by Joint Optimization of Direct Frame Synthesis and Optical-Flow Estimation

    Navin Ranjan1, Sovit Bhandari1, Yeong-Chan Kim1,2, Hoon Kim1,2,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2615-2639, 2023, DOI:10.32604/cmc.2023.026086 - 31 March 2023

    Abstract Video prediction is the problem of generating future frames by exploiting the spatiotemporal correlation from the past frame sequence. It is one of the crucial issues in computer vision and has many real-world applications, mainly focused on predicting future scenarios to avoid undesirable outcomes. However, modeling future image content and object is challenging due to the dynamic evolution and complexity of the scene, such as occlusions, camera movements, delay and illumination. Direct frame synthesis or optical-flow estimation are common approaches used by researchers. However, researchers mainly focused on video prediction using one of the approaches.… More >

  • Open Access

    ARTICLE

    VMCTE: Visualization-Based Malware Classification Using Transfer and Ensemble Learning

    Zhiguo Chen1,2,*, Jiabing Cao1,2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4445-4465, 2023, DOI:10.32604/cmc.2023.038639 - 31 March 2023

    Abstract The Corona Virus Disease 2019 (COVID-19) effect has made telecommuting and remote learning the norm. The growing number of Internet-connected devices provides cyber attackers with more attack vectors. The development of malware by criminals also incorporates a number of sophisticated obfuscation techniques, making it difficult to classify and detect malware using conventional approaches. Therefore, this paper proposes a novel visualization-based malware classification system using transfer and ensemble learning (VMCTE). VMCTE has a strong anti-interference ability. Even if malware uses obfuscation, fuzzing, encryption, and other techniques to evade detection, it can be accurately classified into its… More >

  • Open Access

    ARTICLE

    Advanced DAG-Based Ranking (ADR) Protocol for Blockchain Scalability

    Tayyaba Noreen1,*, Qiufen Xia1, Muhammad Zeeshan Haider2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2593-2613, 2023, DOI:10.32604/cmc.2023.036139 - 31 March 2023

    Abstract In the past decade, blockchain has evolved as a promising solution to develop secure distributed ledgers and has gained massive attention. However, current blockchain systems face the problems of limited throughput, poor scalability, and high latency. Due to the failure of consensus algorithms in managing nodes’identities, blockchain technology is considered inappropriate for many applications, e.g., in IoT environments, because of poor scalability. This paper proposes a blockchain consensus mechanism called the Advanced DAG-based Ranking (ADR) protocol to improve blockchain scalability and throughput. The ADR protocol uses the directed acyclic graph ledger, where nodes are placed… More >

  • Open Access

    ARTICLE

    Dark Forest Algorithm: A Novel Metaheuristic Algorithm for Global Optimization Problems

    Dongyang Li1, Shiyu Du2,*, Yiming Zhang2, Meiting Zhao3

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2775-2803, 2023, DOI:10.32604/cmc.2023.035911 - 31 March 2023

    Abstract Metaheuristic algorithms, as effective methods for solving optimization problems, have recently attracted considerable attention in science and engineering fields. They are popular and have broad applications owing to their high efficiency and low complexity. These algorithms are generally based on the behaviors observed in nature, physical sciences, or humans. This study proposes a novel metaheuristic algorithm called dark forest algorithm (DFA), which can yield improved optimization results for global optimization problems. In DFA, the population is divided into four groups: highest civilization, advanced civilization, normal civilization, and low civilization. Each civilization has a unique way… More >

  • Open Access

    ARTICLE

    An Energy-Efficient Protocol for Internet of Things Based Wireless Sensor Networks

    Mohammed Mubarak Mustafa1, Ahmed Abelmonem Khalifa2,3, Korhan Cengiz4,5, Nikola Ivković6,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2397-2412, 2023, DOI:10.32604/cmc.2023.036275 - 31 March 2023

    Abstract The performance of Wireless Sensor Networks (WSNs) is an important fragment of the Internet of Things (IoT), where the current WSNbuilt IoT network’s sensor hubs are enticing due to their critical resources. By grouping hubs, a clustering convention offers a useful solution for ensuring energy-saving of hubs and Hybrid Media Access Control (HMAC) during the course of the organization. Nevertheless, current grouping standards suffer from issues with the grouping structure that impacts the exhibition of these conventions negatively. In this investigation, we recommend an Improved Energy-Proficient Algorithm (IEPA) for HMAC throughout the lifetime of the… More >

  • Open Access

    ARTICLE

    Classifying Misinformation of User Credibility in Social Media Using Supervised Learning

    Muhammad Asfand-e-Yar1,*, Qadeer Hashir1,*, Syed Hassan Tanvir1, Wajeeha Khalil2

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2921-2938, 2023, DOI:10.32604/cmc.2023.034741 - 31 March 2023

    Abstract The growth of the internet and technology has had a significant effect on social interactions. False information has become an important research topic due to the massive amount of misinformed content on social networks. It is very easy for any user to spread misinformation through the media. Therefore, misinformation is a problem for professionals, organizers, and societies. Hence, it is essential to observe the credibility and validity of the News articles being shared on social media. The core challenge is to distinguish the difference between accurate and false information. Recent studies focus on News article… More >

Displaying 9971-9980 on page 998 of 31561. Per Page