Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (16,946)
  • Open Access

    ARTICLE

    Synergistic Modification of PVC with Nitrogen-Containing Heterocycle and Tung-Oil Based Derivative for Enhanced Heat Stabilization and Plasticization Behavior

    Mei Wang1, Xinzhu Fan1, Quan Bu1, Puyou Jia2,3,*, Shouqi Yuan4

    Journal of Renewable Materials, Vol.11, No.4, pp. 2015-2031, 2023, DOI:10.32604/jrm.2023.026063

    Abstract The additives present in polyvinyl chloride (PVC) materials are the major source of organic by-products during PVC degradation. The thermal stabilizer and plasticizer are the main additives that endow PVC with the required properties during its processing. However, these two additives easily migrate when samples are obtained by physical mixing of the additives with PVC. This causes the reduction of PVC sample efficacy and the increase in the formation of organic by-products in the radiolysis process. In this work, two kinds of grafted PVC samples (tung-oil derivative grafted PVC and Atz grafted PVC, abbreviated as P-GT4 and P-AZ3) were synthesized… More > Graphic Abstract

    Synergistic Modification of PVC with Nitrogen-Containing Heterocycle and Tung-Oil Based Derivative for Enhanced Heat Stabilization and Plasticization Behavior

  • Open Access

    ARTICLE

    Ammonium Metavanadate Fabricated by Selective Precipitation of Impurity Chemicals on Inorganic Flocculants

    Bo Shi1, Dandan Zhu2,*, Pengxiang Lei3, Ximin Li4, Hengbo Xiao4, Lihua Qian4,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1951-1961, 2023, DOI:10.32604/jrm.2023.025271

    Abstract High purity ammonium metavanadate (NH4VO3) is the most vital chemical to produce V2O5, VO2, VN alloy, VFe alloy and VOSO4, which have some prospective applications for high strength steel, smart window, infrared detector and imaging, large scale energy storage system. NH4VO3 is usually produced by spontaneous crystallization from the aqueous solution due to its sharp dependence of solubility on the temperature. However, hazardous chemicals in industrial effluent, include phosphorate, silicate and arsenate, causing severe damage to the environment. In this work, these impurities are selectively precipitated onto inorganic flocculants, while the vanadate dissolved in an aqueous solution keeps almost undisturbed.… More > Graphic Abstract

    Ammonium Metavanadate Fabricated by Selective Precipitation of Impurity Chemicals on Inorganic Flocculants

  • Open Access

    ARTICLE

    Preparation and Properties of Vegetable-Oil-Based Thioether Polyol and Ethyl Cellulose Supramolecular Composite Films

    Ruyu Yan1,2,3,4, Jian Fang1,*, Xiaohua Yang2,3,4,5,6, Na Yao2,3,4,5,6, Mei Li2,3,4,5,6, Yuan Nie2,3,4,5,6, Tianxiang Deng2,3,4,5,6, Haiyang Ding2,3,4,5,6, Lina Xu2,3,4,5,6, Shouhai Li2,3,4,5,6,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1937-1950, 2023, DOI:10.32604/jrm.2023.025126

    Abstract Ethyl cellulose (EC), an important biomass-based material, has excellent film-forming properties. Nevertheless, the high interchain hydrogen bond interaction leads to a high glass transition temperature of EC, which makes it too brittle to be used widely. The hydroxyl group on EC can form a supramolecular system in the form of a non-covalent bond with an effective plasticizer. In this study, an important vegetable-oil-based derivative named dimer fatty acid was used to prepare a novel special plasticizer for EC. Dimer-fatty-acid-based thioether polyol (DATP) was synthesized and used to modify ethyl cellulose films. The supramolecular composite films of DATP and ethyl cellulose… More > Graphic Abstract

    Preparation and Properties of Vegetable-Oil-Based Thioether Polyol and Ethyl Cellulose Supramolecular Composite Films

  • Open Access

    REVIEW

    Effect of Recycled Aggregate and Slag as Substitutes for Natural Aggregate and Cement on the Properties of Concrete: A Review

    Peng Zhang1,2, Wenshuai Wang1, Yuanxun Zheng1,*, Shaowei Hu2,3

    Journal of Renewable Materials, Vol.11, No.4, pp. 1853-1879, 2023, DOI:10.32604/jrm.2023.024981

    Abstract Using recycled aggregate (RA) and slag instead of natural aggregate (NA) and cement can reduce greenhouse gas emissions (GHGE) and achieve effective waste recovery. In recent years, RA has been widely used to replace NA in concrete. Every year, several researchers conduct investigations on the mechanical performance and durability of recycled aggregate concrete (RAC). Due to the loose and porous material properties of RA, the mechanical properties and durability of RAC, such as strength, carbonation resistance, permeability resistance and chloride ion penetration resistance, are greatly reduced compared with natural aggregate concrete. In contrast, concrete containing slag instead of NA and… More >

  • Open Access

    ARTICLE

    Early-Age Properties Development of Recycled Glass Powder Blended Cement Paste: Strengths, Shrinkage, Nanoscale Characteristics, and Environmental Analysis

    Zhihai He1,2, Menglu Shen1, Jinyan Shi3,*, Jingyu Chang1, Víctor Revilla-Cuesta4, Osman Gencel5

    Journal of Renewable Materials, Vol.11, No.4, pp. 1835-1852, 2023, DOI:10.32604/jrm.2023.024887

    Abstract Recycling solid waste in cement-based materials cannot only ease its load on the natural environment but also reduce the carbon emissions of building materials. This study aims to investigate the effect of recycled glass powder (RGP) on the early-age mechanical properties and autogenous shrinkage of cement pastes, where cement is replaced by 10%, 20% and 30% of RGP. In addition, the microstructure and nano-mechanical properties of cement paste with different RGP content and water to binder (W/B) ratio were also evaluated using SEM, MIP and nanoindentation techniques. The results indicate that the early-age autogenous shrinkage decreases with the increase of… More > Graphic Abstract

    Early-Age Properties Development of Recycled Glass Powder Blended Cement Paste: Strengths, Shrinkage, Nanoscale Characteristics, and Environmental Analysis

  • Open Access

    ARTICLE

    Compressive Performance of Fiber Reinforced Recycled Aggregate Concrete by Basalt Fiber Reinforced Polymer-Polyvinyl Chloride Composite Jackets

    Zhijie Fan1, Huaxin Liu1, Genjin Liu2,*, Xuezhi Wang1, Wenqi Cui1

    Journal of Renewable Materials, Vol.11, No.4, pp. 1763-1791, 2023, DOI:10.32604/jrm.2023.024319

    Abstract The development of recycled aggregate concrete (RAC) provides a new approach to limiting the waste of natural resources. In the present study, the mechanical properties and deformability of RACs were improved by adding basalt fibers (BFs) and using external restraints, such as a fiber-reinforced polymer (FRP) jacket or a PVC pipe. Samples were tested under axial compression. The results showed that RAC (50% replacement of aggregate) containing 0.2% BFs had the best mechanical properties. Using either BFs or PVC reinforcement had a slight effect on the loadbearing capacity and mode of failure. With different levels of BFs, the compressive strengths… More > Graphic Abstract

    Compressive Performance of Fiber Reinforced Recycled Aggregate Concrete by Basalt Fiber Reinforced Polymer-Polyvinyl Chloride Composite Jackets

  • Open Access

    ARTICLE

    Phosphorus Containing Rubber Seed oil as a Flame Retardant Plasticizer for Polyvinyl Chloride

    Hongying Chu1,2,*, Huabei Li1,2, Xiaoyan Sun1, Yaowang Zhang1,2

    Journal of Renewable Materials, Vol.11, No.4, pp. 1731-1743, 2023, DOI:10.32604/jrm.2022.024160

    Abstract The application of phthalate plasticizers has been restricted around the world due to their poor migration and potential harm to the human body. Hence, producing functional bio-based plasticizers via exploiting clean and reusable resources meets the satisfaction of current demands. In this study, flame-retardant rubber seed oil-based plasticize (FRP) was prepared via epoxidation reaction and ring opening addition reactions, which was used as a flame-resistant plasticizer for polyvinyl chloride to replace petroleum-based phthalate plasticizer. When DOP was replaced with FRP, the torque of PVC blends increased from 11.4 to 18.4 N⋅m, the LOI value increased from 24.3% for PVC-FRP-0% to 33.1%… More > Graphic Abstract

    Phosphorus Containing Rubber Seed oil as a Flame Retardant Plasticizer for Polyvinyl Chloride

  • Open Access

    ARTICLE

    Molecular Dynamics Simulation of Interface Properties between Water-Based Inorganic Zinc Silicate Coating Modified by Organosilicone and Iron Substrate

    Hengjiao Gao1, Yuqing Xiong1,*, Kaifeng Zhang1, Shengzhu Cao1, Mingtai Hu1, Yi Li1, Ping Zhang2, Xiaoli Liu3

    Journal of Renewable Materials, Vol.11, No.4, pp. 1715-1729, 2023, DOI:10.32604/jrm.2022.024023

    Abstract The interface properties of Fe(101)/zinc silicate modified by organo-siloxane (KH-570) was studied by using the method of molecular dynamics simulation. By calculating the temperature and energy fluctuation of equilibrium state, equilibrium concentration distribution, MSD of layer and different groups, and interaction energy of two interface models, the influencing mechanism on the interface properties of adding organosiloxane into coating system was studied at the atomic scale. It shows that the temperature and energy of interface oscillated in a small range and it was exited in a state of dynamic equilibrium within the initial simulation stage (t < 20 ps). It can… More > Graphic Abstract

    Molecular Dynamics Simulation of Interface Properties between Water-Based Inorganic Zinc Silicate Coating Modified by Organosilicone and Iron Substrate

  • Open Access

    ARTICLE

    Tensile Properties and Wear Resistance of Mg Alloy Containing High Si as Implant Materials

    Mengqi Cong*, Yang Zhang, Yunlong Zhang, Xiao Liu, Yalin Lu, Xiaoping Li

    Journal of Renewable Materials, Vol.11, No.4, pp. 1977-1989, 2023, DOI:10.32604/jrm.2023.023849

    Abstract Magnesium alloy has been considered as one of the third-generation biomaterials for the regeneration and support of functional bone tissue. As a regeneration implant material with great potential applications, in-situ Mg2Si phase reinforced Mg-6Zn cast alloy was comprehensively studied and expected to possess excellent mechanical properties via the refining and modifying of Mg2Si reinforcements. The present study demonstrates that the primary and eutectic Mg2Si phase can be greatly modified by the yttrium (Y) addition. The size of the primary Mg2Si phases can be reduced to ~20 μm with an addition of 0.5 wt.% Y. This phenomenon is mainly attributed to… More > Graphic Abstract

    Tensile Properties and Wear Resistance of Mg Alloy Containing High Si as Implant Materials

  • Open Access

    ARTICLE

    Evaluation of Self-Healing Efficiency of Microcapsule-Based Self-Healing Cementitious Composites Based on Acoustic Emission

    Wenfeng Hao1,*, Hao Hao2, Humaira Kanwal2, Shiping Jiang2,*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1687-1697, 2023, DOI:10.32604/jrm.2022.023795

    Abstract Microcapsule self-healing technology is one of the effective methods to solve the durability problem of cement-based composites. The evaluation method of the self-healing efficiency of microcapsule self-healing cement-based composites is one of the difficulties that limits the self-healing technology. This paper attempts to characterize the self-healing efficiency of microcapsule self-healing cement-based composites by acoustic emission (AE) parameters, which provides a reference for the evaluation of microcapsule self-healing technology. Firstly, a kind of self-healing microcapsules were prepared, and the microcapsules were added into the cement-based composites to prepare the compression samples. Then, the specimen with certain pre damage was obtained by… More >

Displaying 21-30 on page 3 of 16946. Per Page  

Share Link

WeChat scan