Advanced Search
Displaying 10821-10830 on page 1083 of 15662. Per Page  

Articles / Online

  • A Method for Estimating Relative Bone Loads from CT Data with Application to the Radius and the Ulna
  • Abstract The two bones of the forearm, the radius and the ulna, have been shown to bear different proportions of the overall forearm load at the wrist and the elbow. This biomechanical data suggests load transfer between the bones occurs through the soft tissues of the forearm. Load transfer from radius to ulna through passive soft tissues such as the interosseous ligament (IOL) has been experimentally measured. Ex vivo studies of the forearm, however, cannot account for the effect of internal loads generated by the muscles and, in some cases, external forces acting directly on the forearm bones. The objective of…
  • More
  •   Views:272       Downloads:246        Download PDF
  • Finite Element Analysis of the Jaw-Teeth/Dental Implant System: A Note About Geometrical and Material Modeling
  • Abstract A critical comparison of several Finite Element models is presented, with reference to the analysis of the stress and strain states around a tooth or a fixed dental implant. Such an analysis, if performed on a full, three-dimensional geometry of the jaw-tooth/dental implant system, requires significant computational resources, and it is therefore often done on simplified models, whose validity can be questionable. On the other side, the use of simplified models is adequate --- almost mandatory --- when detailed results are needed, or when geometrical and material nonlinearities, as well as other complicating factors, are to be taken into account.…
  • More
  •   Views:294       Downloads:345        Download PDF
  • Non-Rigid Modeling of Body Segments for Improved Skeletal Motion Estimation
  • Abstract A necessary requirement for many musculoskeletal modeling tasks is an estimation of skeletal motion from observations of the surface of a body segment. The skeletal motion may be used directly for inverse kinematic calculations or as an observation sequence for forward dynamic simulations. This paper describes a fundamentally new approach to human motion capture for biomechanical analysis. Techniques for generating three-dimensional models of human skeletal elements from magnetic resonance imaging data are described, along with a methodology for corresponding these high-resolution internal models to externally observable features. A system for generating dynamic visualizations of these skeletal models from retro-reflective, skin-mounted…
  • More
  •   Views:342       Downloads:292        Download PDF
  • An Iterative and Adaptive Lie-Group Method for Solving the Calderón Inverse Problem
  • Abstract We solve the Calderón inverse conductivity problem [Calderón (1980, 2006)], for an elliptic type equation in a rectangular plane domain, to recover an unknown conductivity function inside the domain, from the over-specified Cauchy data on the bottom of the rectangle. The Calderón inverse problem exhibitsthree-fold simultaneous difficulties: ill-posedness of the inverse Cauchy problem, ill-posedness of the parameter identification, and no information inside the domain being available on the impedance function. In order to solve this problem, we discretize the whole domain into many sub-domains of finite strips, each with a small height. Thus the Calderón inverse problem is reduced to…
  • More
  •   Views:646       Downloads:492        Download PDF
  • The MLPG for Bending of Electroelastic Plates
  • Abstract The plate equations are obtained by means of an appropriate expansion of the mechanical displacement and electric potential in powers of the thickness coordinate in the variational equation of electroelasticity and integration through the thickness. The appropriate assumptions are made to derive the uncoupled equations for the extensional and flexural motion. The present approach reduces the original 3-D plate problem to a 2-D problem, with all the unknown quantities being localized in the mid-plane of the plate. A meshless local Petrov-Galerkin (MLPG) method is then applied to solve the problem. Nodal points are randomly spread in the mid-plane of the…
  • More
  •   Views:621       Downloads:474        Download PDF
  • A Numerical Study of the Influence of Surface Roughness on the Convective Heat Transfer in a Gas Flow
  • Abstract This work presents a numerical investigation of the influence of the roughness of a cylindrical particle on the drag coefficient and the Nusselt number at low Reynolds numbers up to 40. The heated cylindrical particle is placed horizontally in a uniform flow. Immersed boundary method (IBM) with a continuous forcing on a fixed Cartesian grid is used. The governing equations are the Navier Stokes equation and the conservation of energy. A finite-volume based discretization and the SIMPLE algorithm with collocated-variables and Rie-Chow stabilization were used to solve the set of equations. Numerical simulations showed that the impact of the roughness…
  • More
  •   Views:737       Downloads:486        Download PDF
  • Size-Dependent Behavior of Macromolecular Solids I: Molecular Origin of the Size Effect
  • Abstract Molecular rotation is the elastic deformation mechanism underpinning macroscopic deformation in macromolecular solid. In this investigation, molecular mechanic simulations are used to investigate the effect of size on the higher order material properties macromolecular solid. The rotational behavior of molecular coils embedded in beams was examined as a function of the beam size in tension, and in bending where the strain gradients in the bent direction are size-dependent. Analysis showed that the effective elastic modulus is size dependent when strain gradients are significant in bending, but not in tension. Analysis of the molecular rotation behavior indicated that the increase in…
  • More
  •   Views:523       Downloads:436        Download PDF
  • Numerical Solution of Non-Isothermal Fluid Flows Using Local Radial Basis Functions (LRBF) Interpolation and a Velocity-Correction Method
  • Abstract Meshfree point collocation method (MPCM) is developed, solving the velocity-vorticity formulation of Navier-Stokes equations, for two-dimensional, steady state incompressible viscous flow problems in the presence of heat transfer. Particular emphasis is placed on the application of the velocity-correction method, ensuring the continuity equation. The Gaussian Radial Basis Functions (GRBF) interpolation is employed to construct the shape functions in conjunction with the framework of the point collocation method. The cases of forced, natural and mixed convection in a 2D rectangular enclosure are examined. The accuracy and the stability of the proposed scheme are demonstrated through three representative, well known and established…
  • More
  •   Views:605       Downloads:576        Download PDF
  • 3D FEM Analyses of the Buckling Delamination of a Rectangular Sandwich Plate Containing Interface Rectangular Cracks and Made from Elastic and Viscoelastic Materials
  • Abstract A three-dimensional buckling delamination problem for the sandwich rectangular plate made from elastic and viscoelastic material is studied. It is supposed that the plate contains interface rectangular cracks (Case 1) and interface rectangular edge-cracks (Case 2) and edge-surfaces of these cracks have initial infinitesimal imperfections. The evolution of these initial imperfections with an external compressive loading acting along the cracks (for a case where the materials of layers of the plate are elastic) or with duration of time (for a case where the materials of layers of the plate are viscoelastic) is investigated within the framework of the piecewise homogeneous…
  • More
  •   Views:512       Downloads:445        Download PDF
Displaying 10821-10830 on page 1083 of 15662. Per Page