Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,097)
  • Open Access

    ARTICLE

    Spatio-Temporal Dynamics and Structure Preserving Algorithm for Computer Virus Model

    Nauman Ahmed1,2, Umbreen Fatima1, Shahzaib Iqbal1, Ali Raza3, Muhammad Rafiq4,*, Muhammad Aziz-ur-Rehman2, Shehla Saeed1, Ilyas Khan5, Kottakkaran Sooppy Nisar6

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 201-212, 2021, DOI:10.32604/cmc.2021.014171

    Abstract The present work is related to the numerical investigation of the spatio-temporal susceptible-latent-breaking out-recovered (SLBR) epidemic model. It describes the computer virus dynamics with vertical transmission via the internet. In these types of dynamics models, the absolute values of the state variables are the fundamental requirement that must be fulfilled by the numerical design. By taking into account this key property, the positivity preserving algorithm is designed to solve the underlying SLBR system. Since, the state variables associated with the phenomenon, represent the computer nodes, so they must take in absolute. Moreover, the continuous system (SLBR) acquires two steady states… More >

  • Open Access

    ARTICLE

    Kumaraswamy Inverted Topp–Leone Distribution with Applications to COVID-19 Data

    Amal S. Hassan1, Ehab M. Almetwally2,*, Gamal M. Ibrahim3

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 337-358, 2021, DOI:10.32604/cmc.2021.013971

    Abstract In this paper, an attempt is made to discover the distribution of COVID-19 spread in different countries such as; Saudi Arabia, Italy, Argentina and Angola by specifying an optimal statistical distribution for analyzing the mortality rate of COVID-19. A new generalization of the recently inverted Topp Leone distribution, called Kumaraswamy inverted Topp–Leone distribution, is proposed by combining the Kumaraswamy-G family and the inverted Topp–Leone distribution. We initially provide a linear representation of its density function. We give some of its structure properties, such as quantile function, median, moments, incomplete moments, Lorenz and Bonferroni curves, entropies measures and stress-strength reliability. Then,… More >

  • Open Access

    ARTICLE

    Rock Hyraxes Swarm Optimization: A New Nature-Inspired Metaheuristic Optimization Algorithm

    Belal Al-Khateeb1,*, Kawther Ahmed2, Maha Mahmood1, Dac-Nhuong Le3,4

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 643-654, 2021, DOI:10.32604/cmc.2021.013648

    Abstract This paper presents a novel metaheuristic algorithm called Rock Hyraxes Swarm Optimization (RHSO) inspired by the behavior of rock hyraxes swarms in nature. The RHSO algorithm mimics the collective behavior of Rock Hyraxes to find their eating and their special way of looking at this food. Rock hyraxes live in colonies or groups where a dominant male watch over the colony carefully to ensure their safety leads the group. Forty-eight (22 unimodal and 26 multimodal) test functions commonly used in the optimization area are used as a testing benchmark for the RHSO algorithm. A comparative efficiency analysis also checks RHSO… More >

  • Open Access

    ARTICLE

    Analysis and Forecasting COVID-19 Outbreak in Pakistan Using Decomposition and Ensemble Model

    Xiaoli Qiang1, Muhammad Aamir2,*, Muhammad Naeem2, Shaukat Ali3, Adnan Aslam4, Zehui Shao1

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 841-856, 2021, DOI:10.32604/cmc.2021.012540

    Abstract COVID-19 has caused severe health complications and produced a substantial adverse economic impact around the world. Forecasting the trend of COVID-19 infections could help in executing policies to effectively reduce the number of new cases. In this study, we apply the decomposition and ensemble model to forecast COVID-19 confirmed cases, deaths, and recoveries in Pakistan for the upcoming month until the end of July. For the decomposition of data, the Ensemble Empirical Mode Decomposition (EEMD) technique is applied. EEMD decomposes the data into small components, called Intrinsic Mode Functions (IMFs). For individual IMFs modelling, we use the Autoregressive Integrated Moving… More >

  • Open Access

    ARTICLE

    Paddy Leaf Disease Detection Using an Optimized Deep Neural Network

    Shankarnarayanan Nalini1,*, Nagappan Krishnaraj2, Thangaiyan Jayasankar3, Kalimuthu Vinothkumar4, Antony Sagai Francis Britto5, Kamalraj Subramaniam6, Chokkalingam Bharatiraja7

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1117-1128, 2021, DOI:10.32604/cmc.2021.012431

    Abstract Precision Agriculture is a concept of farm management which makes use of IoT and networking concepts to improve the crop. Plant diseases are one of the underlying causes in the decrease in the number of quantity and quality of the farming crops. Recognition of diseases from the plant images is an active research topic which makes use of machine learning (ML) approaches. A novel deep neural network (DNN) classification model is proposed for the identification of paddy leaf disease using plant image data. Classification errors were minimized by optimizing weights and biases in the DNN model using a crow search… More >

  • Open Access

    ARTICLE

    Improving Polylactide Toughness by Plasticizing with Low Molecular Weight Polylactide-Poly(Butylene Succinate) Copolymer

    Yottha Srithep1,*, Onpreeya Veang-in1, Dutchanee Pholharn2, Lih-Sheng Turng3, John Morris4

    Journal of Renewable Materials, Vol.9, No.7, pp. 1267-1281, 2021, DOI:10.32604/jrm.2021.015604

    Abstract A low-molecular-weight polylactide-poly(butylene succinate) (PLA-PBS) copolymer was synthesized and incorporated into polylactide (PLA) as a novel toughening agent by solvent casting. The copolymer had the same chemical structure and function as PLA and it was used as a plasticizer to PLA. The copolymer was blended with PLA at a weight ratio from 2 to 10 wt%. Phase separation between PLA and PLA-PBS was not observed from their scanning electron microscopy (SEM) images and the crystal structure of PLA almost remained unchanged based on the X-ray diffraction (XRD) measurement. The melt flow index (MFI) of the blends was higher as the… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Co-Combustion of Pulverized Coal and Different Proportions of Refused Derived Fuel in TTF Precalciner

    Jiekun Zhu, Hongtao Kao*

    Journal of Renewable Materials, Vol.9, No.7, pp. 1329-1343, 2021, DOI:10.32604/jrm.2021.015079

    Abstract Based on the theory of computational fluid dynamics (CFD), pulverized coal combustion alone, and the co-combustion of pulverized coal and refuse-derived fuel (RDF) in a Trinal-sprayed calciner (TTF) precalciner were simulated. The results revealed that when coal was used as a single fuel, the velocity field in the precalciner had good symmetry, and formed three spray effects and multiple recirculation zones. The main combustion zone was distributed in the lower tertiary air and pulverized coal area, and the highest temperature reached up to 1,500 K. According to the simulation results, the predicted decomposing rate of raw meal was 90.12%, which… More >

  • Open Access

    ARTICLE

    Fiber Loading of Date Palm and Kenaf Reinforced Epoxy Composites: Tensile, Impact and Morphological Properties

    Syed Waheedullah Ghori1,*, G. Srinivasa Rao2

    Journal of Renewable Materials, Vol.9, No.7, pp. 1283-1292, 2021, DOI:10.32604/jrm.2021.014987

    Abstract Date palm fiber (DPF) and kenaf fiber were reinforced in epoxy having various fiber loading 40%, 50%, and 60% by weight. These hybrid samples were manufactured by hot press technique and then characterized for tensile, impact, and morphological behavior to evaluate the ratio of fibers in the hybrid composites; the addition of kenaf improved the tensile properties, Scanning Electron Microscopy (SEM) revealed the interfacial bonding of fiber/matrix, and dispersion and void content in composites. Impact test studies reflected the effect of natural fiber with epoxy, level of stress transfer from matrix to reinforced material, and reinforced material’s role in absorbing… More > Graphic Abstract

    Fiber Loading of Date Palm and Kenaf Reinforced Epoxy Composites: Tensile, Impact and Morphological Properties

  • Open Access

    ARTICLE

    Glycolysis Recycling of Waste Polyurethane Rigid Foam Using Different Catalysts

    Xiaohua Gu, Hongxiang Luo*, Shiwei Lv, Peng Chen

    Journal of Renewable Materials, Vol.9, No.7, pp. 1253-1266, 2021, DOI:10.32604/jrm.2021.014876

    Abstract Dramatically increasing waste polyurethane rigid foam (WPRF) draws the attention of the world. A mixture of ethylene glycol (EG) and diethylene glycol (DEG) is used as glycolysis agents. WPRF was subjected to alcoholysis using different catalysts which are titanium ethylene glycol and potassium hydroxide to obtain recycled polyol, respectively. The effect of a different catalyst on the viscosity and hydroxyl value of recycled polyol is discussed. The regenerated polyurethane (RPU) is performed using the recycled polyol. Infrared spectrum, compressive strength, apparent density, water absorption, scanning electron microscope, and thermogravimetric analysis are carried out to investigate the effect of WPRF degradation… More >

  • Open Access

    ARTICLE

    New Biobased Polyurethane Materials from Modified Vegetable Oil

    Chakib Mokhtari1, Fouad Malek1, Sami Halila2, Mohamed Naceur Belgacem3,*, Ramzi Khiari3,4,5,*

    Journal of Renewable Materials, Vol.9, No.7, pp. 1213-1223, 2021, DOI:10.32604/jrm.2021.015475

    Abstract Bio-based polyurethanes (PUs) have been occurred a large attention nowadays. It was found to be an alternative to the petrochemical based materials to the fact of their weak environmental influence, availability, good price and biodegradability. In addition, the nature shows several bio-derived compounds as raw materials for the synthesis of polyols, including the vegetable oils, polyphenol, terpene, and other bio-renewable sources. With the aim to develop a new family of biobased polyurethanes (PUs) via vegetable oils, the elaboration of new Jojoba-based PUs was performed by catalyst-free polycondensation reaction of a synthesized Jojoba diol with various diisocyanates such us toluene diisocyanate… More > Graphic Abstract

    New Biobased Polyurethane Materials from Modified Vegetable Oil

Displaying 12411-12420 on page 1242 of 22097. Per Page