Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,098)
  • Open Access

    ARTICLE

    Structure, Dynamic-Mechanical and Acoustic Properties of Oil Palm Trunk Modified by Melamine Formaldehyde

    Tetti Novalina Manik1,2,*, Sulung Apria Nuki2, Nur Aini Fauziyah1, Mashuri1, Mochamad Zainuri1, Darminto1,*

    Journal of Renewable Materials, Vol.9, No.9, pp. 1647-1660, 2021, DOI:10.32604/jrm.2021.016089

    Abstract The performance of oil palm trunk wastes from Banjarbaru of South Kalimantan was improved with the help of chemical modification in a two-step treatment. The first was formalization with formaldehyde solution with varying pH, and the second was impregnation with melamine-formaldehyde resin under 5 bar pressure for an hour. In these processes, the samples were cured at 120°C for 10 min and then dried in an oven at (103 ± 2)°C in order to attain a moisture content of less than 6%. These treatments improved the physical properties (density, moisture content, and volume swelling), mechanical resistance, dynamic-mechanical and acoustic performance… More > Graphic Abstract

    Structure, Dynamic-Mechanical and Acoustic Properties of Oil Palm Trunk Modified by Melamine Formaldehyde

  • Open Access

    ARTICLE

    Effect of Doped Alkali Metal Ions on the SO2 Capture Performance of MnO2 Desulfurization Materials at Low Temperature

    Xing Li1,3, Yugo Osaka2,*, Hongyu Huang1, Takuya Tsujiguchi2, Akio Kodama2

    Journal of Renewable Materials, Vol.9, No.9, pp. 1541-1553, 2021, DOI:10.32604/jrm.2021.015514

    Abstract Sulfur dioxide (SO2) emissions from diesel exhaust pose a serious threat to the environment and human health. Thus, desulfurization technology and the performance of desulfurization materials must be improved. In this study, MnO2 was modified with various alkali metal ions using the impregnation method to enhance its SO2 capture performance. The composites were characterized intensively by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, and Brunauer-Emmett-Teller theory. The SO2 capture performance of these composites were measured via thermogravimetry, and the effect of doping with alkali metal ions on the SO2 capture performance of MnO2 was investigated. Results showed that… More >

  • Open Access

    ARTICLE

    Physical Properties of SiC Nanostructure for Optoelectronics Applications

    Mayyadah H. Mohsin1, Najwan H. Numan2, Evan T. Salim1,*, Makram A. Fakhri2,*

    Journal of Renewable Materials, Vol.9, No.9, pp. 1519-1530, 2021, DOI:10.32604/jrm.2021.015465

    Abstract A SiC nanofilms have been deposited and investigated on quartz and silicon substrates using pulsed laser deposition technique with the 300 pulses of Nd: YAG laser at two different laser wavelengths of 1064 nm and 532 nm. The structural, morphological, and optical properties of the deposited nanostructure SiC were prepared and characterized as a function of the wavelengths of the used laser. The structural result shows four different pecks at (111), (200), (220), and (311) planes related to Nano SiC. The transmission result presents that the optical energy gap value for the SiC nanostructure is depended on the wavelength of… More > Graphic Abstract

    Physical Properties of SiC Nanostructure for Optoelectronics Applications

  • Open Access

    ARTICLE

    Carbonation Reaction of Lithium Hydroxide during Low Temperature Thermal Energy Storage Process

    Jun Li1,2,3, Tao Zeng1,2,3,*, Noriyuki Kobayashi4, Rongjun Wu4, Haotai Xu4, Lisheng Deng1,2,3, Zhaohong He1,2,3, Hongyu Huang1,2,3,*

    Journal of Renewable Materials, Vol.9, No.9, pp. 1621-2630, 2021, DOI:10.32604/jrm.2021.015231

    Abstract In order to apply lithium hydroxide (LiOH) as a low temperature chemical heat storage material, the carbonation reaction of LiOH and the prevention method are focused in this research. The carbonation of raw LiOH at storage and hydration condition is experimentally investigated. The results show that the carbonation reaction of LiOH with carbon dioxide (CO2) is confirmed during the hydration reaction. The carbonation of LiOH can be easily carried out with CO2 at room temperature and humidity. LiOH can be carbonated at a humidity range of 10% to 20%, a normal humidity region that air can easily be reached. Furthermore,… More >

  • Open Access

    ARTICLE

    Bamboo Nail: A Novel Connector for Timber Assemblies

    Yehan Xu, Zhifu Dong, Chong Jia, Zhiqiang Wang*, Xiaoning Lu*

    Journal of Renewable Materials, Vol.9, No.9, pp. 1609-1620, 2021, DOI:10.32604/jrm.2021.015193

    Abstract

    Nail connection is widely used in engineering and construction fields. In this study, bamboo nail was proposed as a novel connector for timber assemblies. Penetration depth of bamboo nail into wood was predicted and tested. The influence of nail parameters (length, radius and ogive radius) on penetration depth were verified. For both tested and predicted results, the penetration depth of bamboo nail increased with the increasing length, radius or ogive radius. In addition, the effect of densification on penetration depth or mechanical properties was evaluated. 1.12 g/cm3 was a critical density when densification was needed, and further increment of density… More >

  • Open Access

    ARTICLE

    Recycling of Mud Derived from Backwash Wastewater Coagulation as Magnetic Sodalite Sphere for Zn2+Adsorption

    Suiyi Zhu1, Manhong Ji1, Hongbin Yu1,*, Zhan Qu1, Jiakuan Yang2, Mingxin Huo1, Yi Wang1

    Journal of Renewable Materials, Vol.9, No.9, pp. 1599-1607, 2021, DOI:10.32604/jrm.2021.015189

    Abstract

    Herein, we reported a method to prepare magnetic sodalite sphere by using the mud from backwash wastewater after polyaluminum chloride (PAC) coagulation. The results showed that approximately 100% of Fe in the wastewater was precipitated as flocculent iron mud (FM) by adding PAC. FM was converted to spherical magnetic sodalite (FMP) with a diameter of 3 μm via a facile alkali hydrothermal method without adding Al/Si resources or reductant. The product FMP had the saturated magnetization of 10.9 emu g−1 and high Zn2+ adsorption capacity of 50.6 mg g−1. Without coagulation with PAC, the removal rate of Fe from the… More > Graphic Abstract

    Recycling of Mud Derived from Backwash Wastewater Coagulation as Magnetic Sodalite Sphere for Zn<sup>2+</sup>Adsorption

  • Open Access

    ARTICLE

    Characterization of the Flexural Behavior of Bamboo Beams

    Limin Tian1,2, Jianpeng Wei3, Jiping Hao1,*, Qiushuo Wang1

    Journal of Renewable Materials, Vol.9, No.9, pp. 1571-1597, 2021, DOI:10.32604/jrm.2021.015166

    Abstract Bamboo is a renewable and environmentally friendly material often used for construction. This study investigates the flexural behavior of bamboo beams through theoretical and finite element (FE) analyses. Considering the material’s nonlinearity, a method of calculating load-deflection curves is proposed and validated via FE analysis. The interfacial slippage dominated by the shear stiffness of the interface between two bamboo poles significantly influences the flexural behavior of double-pole bamboo beams. Thus, the load-deflection curves for different shear stiffnesses can be obtained via theoretical and FE analyses. Subsequently, a novel configuration using diagonal steel bands to avoid slippage is presented. An inclination… More > Graphic Abstract

    Characterization of the Flexural Behavior of Bamboo Beams

  • Open Access

    ABSTRACT

    Abstract: XXII Congress and XL Annual Meeting of Rosario Biology Society

    BIOCELL, Vol.45, Suppl.2, pp. 1-21, 2021

    Abstract This article has no abstract. More >

  • Open Access

    ABSTRACT

    Abstract: LVI Annual Meeting of SAIB and XV Annual Meeting of SAMIGE

    BIOCELL, Vol.45, Suppl.1, pp. 1-173, 2021

    Abstract This article has no abstract. More >

  • Open Access

    REVIEW

    Biomedical overview of melanin. 1. Updating melanin biology and chemistry, physico-chemical properties, melanoma tumors, and photothermal therapy

    ALFONSO BLÁZQUEZ-CASTRO1,2,*, JUAN CARLOS STOCKERT2,3

    BIOCELL, Vol.45, No.4, pp. 849-862, 2021, DOI:10.32604/biocell.2021.015900

    Abstract Melanins (eumelanin, pheomelanin, and allomelanin) represent a very, if not the most, important group of biological pigments. Their biological roles are multiple, from photoprotection to antioxidant activity, heavy metal disposal or the myriad uses of color in organisms across all Phyla. In the first part of this review, eumelanin biology and some chemical aspects will be presented, as well as key physico-chemical features that make this biological pigment so interesting. The principal characteristics of the melanocyte, the melanin-synthesizing cell in mammals, will also be introduced. Transformed melanocytes are the cause of one of the most devastating known cancers: the malignant… More >

Displaying 11951-11960 on page 1196 of 22098. Per Page