Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,561)
  • Open Access

    ARTICLE

    Failure Mode and Effects Analysis Based on Z-Numbers and the Graded Mean Integration Representation

    Hanhan Zhang1, Zhihui Xu2, Hong Qian1, Xiaoyan Su1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1005-1019, 2023, DOI:10.32604/cmes.2022.021898 - 31 August 2022

    Abstract Failure mode and effects analysis (FMEA) is a widely used safety assessment method in many fields. Z-number was previously applied in FMEA since it can take both possibility and reliability of information into consideration. However, the use of fuzzy weighted mean to integrate Z-valuations may have some drawbacks and is not suitable for some situations. In this paper, an improved method is proposed based on Z-numbers and the graded mean integration representation (GMIR) to deal with the uncertain information in FMEA. First, Z-numbers are constructed based on the evaluations of risk factors O, S, D for each More >

  • Open Access

    ARTICLE

    Topology Optimization of Sound-Absorbing Materials for Two-Dimensional Acoustic Problems Using Isogeometric Boundary Element Method

    Jintao Liu1, Juan Zhao1, Xiaowei Shen1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 981-1003, 2023, DOI:10.32604/cmes.2022.021641 - 31 August 2022

    Abstract In this work, an acoustic topology optimization method for structural surface design covered by porous materials is proposed. The analysis of acoustic problems is performed using the isogeometric boundary element method. Taking the element density of porous materials as the design variable, the volume of porous materials as the constraint, and the minimum sound pressure or maximum scattered sound power as the design goal, the topology optimization is carried out by solid isotropic material with penalization (SIMP) method. To get a limpid 0–1 distribution, a smoothing Heaviside-like function is proposed. To obtain the gradient value More >

  • Open Access

    ARTICLE

    Tensor Train Random Projection

    Yani Feng1, Kejun Tang2, Lianxing He3, Pingqiang Zhou1, Qifeng Liao1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1195-1218, 2023, DOI:10.32604/cmes.2022.021636 - 31 August 2022

    Abstract This work proposes a Tensor Train Random Projection (TTRP) method for dimension reduction, where pairwise distances can be approximately preserved. Our TTRP is systematically constructed through a Tensor Train (TT) representation with TT-ranks equal to one. Based on the tensor train format, this random projection method can speed up the dimension reduction procedure for high-dimensional datasets and requires fewer storage costs with little loss in accuracy, compared with existing methods. We provide a theoretical analysis of the bias and the variance of TTRP, which shows that this approach is an expected isometric projection with bounded More >

  • Open Access

    ARTICLE

    An Unambiguity and Anti-Range Eclipse Method for PD Radar Using Biphase Coded Signals

    Jihong Yan1,2, Weihan Ni1,*, Jianshu Zhai2, Haiyang Dong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1337-1351, 2023, DOI:10.32604/cmes.2022.021567 - 31 August 2022

    Abstract Target detection is an important research content in the radar field. At present, efforts are being made to optimize the precision of detection information. In this paper, we use the high pulse repetition frequency (HPRF) transmission method and orthogonal biphase coded signals in each pulse to avoid velocity ambiguity and range ambiguity of radar detection. In addition, We also apply Walsh matrix and genetic algorithm (GA) to generate satisfying orthogonal biphase coded signals with low auto-correlation sidelobe peak and cross-correlation peak, which make the results more accurate. In a radar receiver, data rearrangement of echo More >

  • Open Access

    ARTICLE

    Monitoring Study of Long-Term Land Subsidence during Subway Operation in High-Density Urban Areas Based on DInSAR-GPS-GIS Technology and Numerical Simulation

    Yu Song1, Xuejun Chen1, Baoping Zou2,*, Jundong Mu3, Rusheng Hu4, Siqi Cheng5, Shengli Zhao3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1021-1039, 2023, DOI:10.32604/cmes.2022.021164 - 31 August 2022

    Abstract During subway operation, various factors will cause long-term land subsidence, such as the vibration subsidence of foundation soil caused by train vibration load, incomplete consolidation deformation of foundation soil during tunnel construction, dense buildings and structures in the vicinity of the tunnel, and changes in water level in the stratum where the tunnel is located. The monitoring of long-term land subsidence during subway operation in high-density urban areas differs from that in low-density urban construction areas. The former is the gathering point of the entire urban population. There are many complex buildings around the project,… More >

  • Open Access

    ARTICLE

    Ghost-RetinaNet: Fast Shadow Detection Method for Photovoltaic Panels Based on Improved RetinaNet

    Jun Wu, Penghui Fan, Yingxin Sun, Weifeng Gui*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1305-1321, 2023, DOI:10.32604/cmes.2022.020919 - 31 August 2022

    Abstract Based on the artificial intelligence algorithm of RetinaNet, we propose the Ghost-RetinaNet in this paper, a fast shadow detection method for photovoltaic panels, to solve the problems of extreme target density, large overlap, high cost and poor real-time performance in photovoltaic panel shadow detection. Firstly, the Ghost CSP module based on Cross Stage Partial (CSP) is adopted in feature extraction network to improve the accuracy and detection speed. Based on extracted features, recursive feature fusion structure is mentioned to enhance the feature information of all objects. We introduce the SiLU activation function and CIoU Loss… More >

  • Open Access

    ARTICLE

    Stability Scrutinization of Agrawal Axisymmetric Flow of Nanofluid through a Permeable Moving Disk Due to Renewable Solar Radiation with Smoluchowski Temperature and Maxwell Velocity Slip Boundary Conditions

    Umair Khan1,2, Aurang Zaib3, Anuar Ishak1, Iskandar Waini4, El-Sayed M. Sherif5, Dumitru Baleanu6,7,8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1371-1392, 2023, DOI:10.32604/cmes.2022.020911 - 31 August 2022

    Abstract The utilization of solar energy is essential to all living things since the beginning of time. In addition to being a constant source of energy, solar energy (SE) can also be used to generate heat and electricity. Recent technology enables to convert the solar energy into electricity by using thermal solar heat. Solar energy is perhaps the most easily accessible and plentiful source of sustainable energy. Copper-based nanofluid has been considered as a method to improve solar collector performance by absorbing incoming solar energy directly. The goal of this research is to explore theoretically the… More >

  • Open Access

    ARTICLE

    Slope Collapse Detection Method Based on Deep Learning Technology

    Xindai An1, Di Wu1,2,*, Xiangwen Xie1, Kefeng Song1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1091-1103, 2023, DOI:10.32604/cmes.2022.020670 - 31 August 2022

    Abstract So far, slope collapse detection mainly depends on manpower, which has the following drawbacks: (1) low reliability, (2) high risk of human safe, (3) high labor cost. To improve the efficiency and reduce the human investment of slope collapse detection, this paper proposes an intelligent detection method based on deep learning technology for the task. In this method, we first use the deep learning-based image segmentation technology to find the slope area from the captured scene image. Then the foreground motion detection method is used for detecting the motion of the slope area. Finally, we More >

  • Open Access

    ARTICLE

    Inner Cascaded U2-Net: An Improvement to Plain Cascaded U-Net

    Wenbin Wu1, Guanjun Liu1,*, Kaiyi Liang2, Hui Zhou2

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1323-1335, 2023, DOI:10.32604/cmes.2022.020428 - 31 August 2022

    Abstract Deep neural networks are now widely used in the medical image segmentation field for their performance superiority and no need of manual feature extraction. U-Net has been the baseline model since the very beginning due to a symmetrical U-structure for better feature extraction and fusing and suitable for small datasets. To enhance the segmentation performance of U-Net, cascaded U-Net proposes to put two U-Nets successively to segment targets from coarse to fine. However, the plain cascaded U-Net faces the problem of too less between connections so the contextual information learned by the former U-Net cannot… More >

  • Open Access

    ARTICLE

    Multi-Objective Redundancy Optimization of Continuous-Point Robot Milling Path in Shipbuilding

    Jianjun Yao*, Chen Qian, Yikun Zhang, Geyang Yu

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 1283-1303, 2023, DOI:10.32604/cmes.2022.021328 - 31 August 2022

    Abstract The 6-DOF manipulator provides a new option for traditional shipbuilding for its advantages of vast working space, low power consumption, and excellent flexibility. However, the rotation of the end effector along the tool axis is functionally redundant when using a robotic arm for five-axis machining. In the process of ship construction, the performance of the parts’ protective coating needs to be machined to meet the Performance Standard of Protective Coatings (PSPC). The arbitrary redundancy configuration in path planning will result in drastic fluctuations in the robot joint angle, greatly reducing machining quality and efficiency. There… More >

Displaying 11881-11890 on page 1189 of 31561. Per Page