Advanced Search
Displaying 11411-11420 on page 1142 of 12513. Per Page  

Articles / Online

  • On Finite Element Analysis of Fluid Flows Fully Coupled with Structural Interactions
  • Abstract The solution of fluid flows, modeled using the Navier-Stokes or Euler equations, fully coupled with structures/solids is considered. Simultaneous and partitioned solution procedures, used in the solution of the coupled equations, are briefly discussed, and advantages and disadvantages of their use are mentioned. In addition, a simplified stability analysis of the interface equations is presented, and unconditional stability for certain choices of time integration schemes is shown. Furthermore, the long-term dynamic stability of fluid-structure interaction systems is assessed by the use of Lyapunov characteristic exponents, which allow differentiating between a chaotic and a regular system behavior. Some state-of-the-art numerical solutions…
  • More
  •   Views:723       Downloads:1746        Download PDF
  • A Naturally Parallelizable Computational Method for Inhomogeneous Parabolic Problems
  • Abstract A parallel numerical algorithm is introduced and analyzed for solving inhomogeneous initial-boundary value parabolic problems. The scheme is based on the method recently introduced in Sheen, Sloan, and Thomée (2000) for homogeneous problems. We give a method based on a suitable choice of multiple parameters. Our scheme allows one to compute solutions in a wide range of time. Instead of using a standard time-marching method, which is not easily parallelizable, we take the Laplace transform in time of the parabolic problems. The resulting elliptic problems can be solved in parallel. Solutions are then computed by a discrete inverse Laplace transformation.…
  • More
  •   Views:667       Downloads:591        Download PDF
  • Coupling of BEM/FEM for Time Domain Structural-Acoustic Interaction Problems
  • Abstract The BEM/FEM coupling procedure is applied to 2-D time domain structural-acoustic interaction problems. The acoustic domain for fluid or air is modeled by BEM scheme that is suitable for both finite and infinite domains, while the structure is modeled by FEM scheme. The input impact, which can be either plane waves or non-plane waves, can either be forces acting directly on the structural-acoustic system or be explosion sources. The far field or near field explosion sources which are difficult to be simulated by finite element modeling, can be simulated exactly by boundary element modeling as internal sources. In order to…
  • More
  •   Views:686       Downloads:608        Download PDF
  • Three-dimensional Numerical Simulation of Unsteady Marangoni Convection in the CZ Method using GSMAC-FEM
  • Abstract Three-dimensional (3D) unsteady numerical simulations are carried out by means of the finite element method (FEM) with the generalized simplified marker and cell (GSMAC) method in silicon melt with a non-deformable free surface with Prandtl number Pr = 1.8534 × 10-2, Marangoni number Ma = 0.0 - 6.2067 × 102, Grashof number Gr = 7.1104 × 106, and the aspect ratio As = 1.0 in the Czochralski (CZ) method. The flow state becomes unstable earlier by increasing the absolute value of the thermal coefficient of surface tension in the range of σT =0.0 - 1.5 × 10-5N/mK. Although the velocity…
  • More
  •   Views:653       Downloads:683        Download PDF
  • Molecular Dynamics Simulation of Crack Propagation in Polycrystalline Material
  • Abstract In this paper, we present a classical molecular dynamics algorithm and its implementation on Cray C90 and Fujitsu VPP700. The characters of this algorithm consist in a grid based on the block division of the atomic system and a neighbor list based on the use of a short range potential. The computer program is used for large scale simulations on a Cray C90 and a 32-node VPP700, and measurements of computational performance are reported. Then, we examine the interaction between a crack propagating and a tilt grain boundary under uniaxial tension using this computer program. The Johnson potential for α-Fe…
  • More
  •   Views:797       Downloads:633        Download PDF
  • The Meshless Local Petrov-Galerkin (MLPG) Method for Solving Incompressible Navier-Stokes Equations
  • Abstract The truly Meshless Local Petrov-Galerkin (MLPG) method is extended to solve the incompressible Navier-Stokes equations. The local weak form is modified in a very careful way so as to ovecome the so-called Babus~ka-Brezzi conditions. In addition, The upwinding scheme as developed in Lin and Atluri (2000a) and Lin and Atluri (2000b) is used to stabilize the convection operator in the streamline direction. Numerical results for benchmark problems show that the MLPG method is very promising to solve the convection dominated fluid mechanics problems.
  • More
  •   Views:758       Downloads:668        Download PDF
  • To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements
  • Abstract To conduct numerical simulations by finite element methods, we often need to generate a high quality mesh, yet with a smaller number of elements. Moreover, the size of each of the elements in the mesh should be approximately equal to a given size requirement. Li et al. recently proposed a new method, named biting, which combines the strengths of advancing front and sphere packing. It generates high quality meshes with a theoretical guarantee. In this paper, we show that biting squares instead of circles not only generates high quality meshes but also has the following advantages. It is easier to…
  • More
  •   Views:615       Downloads:614        Download PDF
  • An Efficient Mesh-Free Method for Nonlinear Reaction-Diffusion Equations
  • Abstract The purpose of this paper is to develop a highly efficient mesh-free method for solving nonlinear diffusion-reaction equations in Rd, d=2, 3. Using various time difference schemes, a given time-dependent problem can be reduced to solving a series of inhomogeneous Helmholtz-type equations. The solution of these problems can then be further reduced to evaluating particular solutions and the solution of related homogeneous equations. Recently, radial basis functions have been successfully implemented to evaluate particular solutions for Possion-type equations. A more general approach has been developed in extending this capability to obtain particular solutions for Helmholtz-type equations by using polyharmonic spline…
  • More
  •   Views:706       Downloads:687        Download PDF
  • Determining the Unknown Traction of a Cracked Elastic Body Using the Inverse Technique with the Dual Boundary Element Method
  • Abstract The two-dimensional elasticity problem of an isotropic material, containing a centered-crack with unknown boundary traction is studied by the inverse procedure. The dual boundary integral equations are used to analyze the problem. While solving the ill-posed inverse problem, both of the conjugate gradient method and the regularization method are used. A scaling factor depending upon the material constant μ is introduced into the sensitivity matrix in order to keep the order of magnitude the same throughout the formulation. The result by using the displacement measurement will be compared with those by stress measurement, and an extensive discussion will be given.…
  • More
  •   Views:681       Downloads:547        Download PDF
  • Modeling and Numerical Computation of Necking in Round Bars Using a Total Lagrangian Elastoplastic Formulation
  • Abstract Necking is a bifurcation phenomenon observed in round bars under tensile loading and has been investigated in numbers of papers. In the present work, it is modeled within the framework of finite rate-independent plasticity. The theory is based on thermodynamic foundations developed for standard materials and results in a total Lagrangian formulation for finite plasticity, where the total strain is decomposed additively according to [Green and Nagdhi 1965)] and the hardening is characterized by a nonlinear isotropic hardening law of the saturation type.
    The discretization and consistent linearization of the elastic-plastic equation set using the standard finite element procedure…
  • More
  •   Views:665       Downloads:593        Download PDF
Displaying 11411-11420 on page 1142 of 12513. Per Page