Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,765)
  • Open Access

    ARTICLE

    A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation

    Kai Jiang, Bin Cao*, Jing Fan

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.046348

    Abstract Multimodal sentiment analysis utilizes multimodal data such as text, facial expressions and voice to detect people’s attitudes. With the advent of distributed data collection and annotation, we can easily obtain and share such multimodal data. However, due to professional discrepancies among annotators and lax quality control, noisy labels might be introduced. Recent research suggests that deep neural networks (DNNs) will overfit noisy labels, leading to the poor performance of the DNNs. To address this challenging problem, we present a Multimodal Robust Meta Learning framework (MRML) for multimodal sentiment analysis to resist noisy labels and correlate distinct modalities simultaneously. Specifically, we… More >

  • Open Access

    ARTICLE

    Discrete Element Modelling of Damage Evolution of Concrete Considering Meso-Structure of ITZ

    Weiliang Gao1, Shixu Jia2, Tingting Zhao2,3,*, Zhiyong Wang2

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.046188

    Abstract The mechanical properties of interfacial transition zones (ITZs) have traditionally been simplified by reducing the stiffness of cement in previous simulation methods. A novel approach based on the discrete element method (DEM) has been developed for modeling concrete. This new approach efficiently simulates the meso-structure of ITZs, accurately capturing their heterogeneous properties. Validation against established uniaxial compression experiments confirms the precision of this model. The proposed model can model the process of damage evolution containing cracks initiation, propagation and penetration. Under increasing loads, cracks within ITZs progressively accumulate, culminating in macroscopic fractures that traverse the mortar matrix, forming the complex,… More >

  • Open Access

    ARTICLE

    Predicting the International Roughness Index of JPCP and CRCP Rigid Pavement: A Random Forest (RF) Model Hybridized with Modified Beetle Antennae Search (MBAS) for Higher Accuracy

    Zhou Ji1, Mengmeng Zhou2, Qiang Wang2, Jiandong Huang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.046025

    Abstract To improve the prediction accuracy of the International Roughness Index (IRI) of Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP), a machine learning approach is developed in this study for the modelling, combining an improved Beetle Antennae Search (MBAS) algorithm and Random Forest (RF) model. The 10-fold cross-validation was applied to verify the reliability and accuracy of the model proposed in this study. The importance scores of all input variables on the IRI of JPCP and CRCP were analysed as well. The results by the comparative analysis showed the prediction accuracy of the IRI of the newly… More > Graphic Abstract

    Predicting the International Roughness Index of JPCP and CRCP Rigid Pavement: A Random Forest (RF) Model Hybridized with Modified Beetle Antennae Search (MBAS) for Higher Accuracy

  • Open Access

    ARTICLE

    Full-Scale Isogeometric Topology Optimization of Cellular Structures Based on Kirchhoff–Love Shells

    Mingzhe Huang, Mi Xiao*, Liang Gao, Mian Zhou, Wei Sha, Jinhao Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.045735

    Abstract Cellular thin-shell structures are widely applied in ultralightweight designs due to their high bearing capacity and strength-to-weight ratio. In this paper, a full-scale isogeometric topology optimization (ITO) method based on Kirchhoff–Love shells for designing cellular tshin-shell structures with excellent damage tolerance ability is proposed. This method utilizes high-order continuous nonuniform rational B-splines (NURBS) as basis functions for Kirchhoff–Love shell elements. The geometric and analysis models of thin shells are unified by isogeometric analysis (IGA) to avoid geometric approximation error and improve computational accuracy. The topological configurations of thin-shell structures are described by constructing the effective density field on the control… More >

  • Open Access

    ARTICLE

    Comparative Analysis of ARIMA and LSTM Model-Based Anomaly Detection for Unannotated Structural Health Monitoring Data in an Immersed Tunnel

    Qing Ai1,2, Hao Tian2,3,*, Hui Wang1,*, Qing Lang1, Xingchun Huang1, Xinghong Jiang4, Qiang Jing5

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.045251

    Abstract Structural Health Monitoring (SHM) systems have become a crucial tool for the operational management of long tunnels. For immersed tunnels exposed to both traffic loads and the effects of the marine environment, efficiently identifying abnormal conditions from the extensive unannotated SHM data presents a significant challenge. This study proposed a model-based approach for anomaly detection and conducted validation and comparative analysis of two distinct temporal predictive models using SHM data from a real immersed tunnel. Firstly, a dynamic predictive model-based anomaly detection method is proposed, which utilizes a rolling time window for modeling to achieve dynamic prediction. Leveraging the assumption… More >

  • Open Access

    ARTICLE

    CAW-YOLO: Cross-Layer Fusion and Weighted Receptive Field-Based YOLO for Small Object Detection in Remote Sensing

    Weiya Shi1,*, Shaowen Zhang2, Shiqiang Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.044863

    Abstract In recent years, there has been extensive research on object detection methods applied to optical remote sensing images utilizing convolutional neural networks. Despite these efforts, the detection of small objects in remote sensing remains a formidable challenge. The deep network structure will bring about the loss of object features, resulting in the loss of object features and the near elimination of some subtle features associated with small objects in deep layers. Additionally, the features of small objects are susceptible to interference from background features contained within the image, leading to a decline in detection accuracy. Moreover, the sensitivity of small… More >

  • Open Access

    ARTICLE

    Fast and Accurate Predictor-Corrector Methods Using Feedback-Accelerated Picard Iteration for Strongly Nonlinear Problems

    Xuechuan Wang1, Wei He1,*, Haoyang Feng1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.043068

    Abstract Although predictor-corrector methods have been extensively applied, they might not meet the requirements of practical applications and engineering tasks, particularly when high accuracy and efficiency are necessary. A novel class of correctors based on feedback-accelerated Picard iteration (FAPI) is proposed to further enhance computational performance. With optimal feedback terms that do not require inversion of matrices, significantly faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their counterparts; however, the computational complexities are comparably low. These advantages enable nonlinear engineering problems to be solved quickly and accurately, even with rough initial guesses from elementary predictors.… More > Graphic Abstract

    Fast and Accurate Predictor-Corrector Methods Using Feedback-Accelerated Picard Iteration for Strongly Nonlinear Problems

  • Open Access

    ARTICLE

    On the Application of Mixed Models of Probability and Convex Set for Time-Variant Reliability Analysis

    Fangyi Li*, Dachang Zhu*, Huimin Shi

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.031332

    Abstract In time-variant reliability problems, there are a lot of uncertain variables from different sources. Therefore, it is important to consider these uncertainties in engineering. In addition, time-variant reliability problems typically involve a complex multilevel nested optimization problem, which can result in an enormous amount of computation. To this end, this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model. In this method, the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a time-independent reliability problem. Further, to solve the… More >

  • Open Access

    ARTICLE

    Investigations on High-Speed Flash Boiling Atomization of Fuel Based on Numerical Simulations

    Wei Zhong1, Zhenfang Xin2, Lihua Wang1,*, Haiping Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.031271

    Abstract Flash boiling atomization (FBA) is a promising approach for enhancing spray atomization, which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure. However, when the outlet speed of the nozzle exceeds 400 m/s, investigating high-speed flash boiling atomization (HFBA) becomes quite challenging. This difficulty arises from the involvement of many complex physical processes and the requirement for a very fine mesh in numerical simulations. In this study, an HFBA model for gasoline direct injection (GDI) is established. This model incorporates primary and secondary atomization, as well as vaporization and… More >

  • Open Access

    ARTICLE

    Natural Convection and Irreversibility of Nanofluid Due to Inclined Magnetohydrodynamics (MHD) Filled in a Cavity with Y-Shape Heated Fin: FEM Computational Configuration

    Afraz Hussain Majeed1, Rashid Mahmood2, Sayed M. Eldin3, Imran Saddique4,5,*, S. Saleem6, Muhammad Jawad7

    CMES-Computer Modeling in Engineering & Sciences, Vol., , DOI:10.32604/cmes.2023.030255

    Abstract This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin and magnetic field. The temperature is constant on the Y-shaped fin, insulating the top wall while the remaining walls remain cold. All walls are subject to impermeability and non-slip conditions. The mathematical modeling of the problem is demonstrated by the continuity, momentum, and energy equations incorporating the inclined magnetic field. For elucidating the flow characteristics Finite Element Method (FEM) is implemented using stable FE pair. A hybrid fine mesh is used for discretizing the domain. Velocity and thermal plots concerning parameters are… More >

Displaying 661-670 on page 67 of 2765. Per Page