Advanced Search
Displaying 9961-9970 on page 997 of 10058. Per Page  
  • Computational Homology, Connectedness, and Structure-Property Relations
  • Abstract The effective properties of composite materials are often strongly related to the connectivity of the material components. Many structure metrics, and related homogenization theories, do not effectively account for this connectivity. In this paper, relationships between the topology, represented via homology theory, and the effective elastic response of composite plates is investigated. The study is presented in the context of popular structure metrics such as percolation theory and correlation functions.
  • More
  •   Views:570       Downloads:560        Download PDF
  • Study of Deformation Mechanisms in Titanium by Interrupted Rolling and Channel Die Compression Tests
  • Abstract The mechanisms of small plastic deformation of titanium (T40) during cold rolling and channel die compression by means of "interrupted in situ" EBSD orientation measurements were studied. These interrupted EBSD orientation measurements allow to determine the rotation flow field which leads to the development of the crystallographic texture during the plastic deformation. Results show that during rolling, tension twins and compression twins occur and various glide systems are activated, the number of grains being larger with twins than with slip traces. In channel die compression, only tension twins are observed in some grains, whereas slip traces can be spotted in…
  • More
  •   Views:572       Downloads:482        Download PDF
  • The Colossal Piezoresistive Effect in Nickel Nanostrand Polymer Composites and a Quantum Tunneling Model
  • Abstract A novel nickel nanostrand-silicone composite material at an optimized 15 vol% filler concentration demonstrates a dramatic piezoresistive effect with a negative gauge factor (ratio of percent change in resistivity to strain). The composite volume resistivity decreases in excess of three orders of magnitude at a 60% strain. The piezoresistivity does decrease slightly as a function of cycles, but not significantly as a function of time. The material's resistivity is also temperature dependent, once again with a negative dependence.
    The evidence indicates that nickel strands are physically separated by matrix material even at high volume fractions, and points to a charge…
  • More
  •   Views:606       Downloads:649        Download PDF
  • The Scalar Homotopy Method for Solving Non-Linear Obstacle Problem
  • Abstract In this study, the nonlinear obstacle problems, which are also known as the nonlinear free boundary problems, are analyzed by the scalar homotopy method (SHM) and the finite difference method. The one- and two-dimensional nonlinear obstacle problems, formulated as the nonlinear complementarity problems (NCPs), are discretized by the finite difference method and form a system of nonlinear algebraic equations (NAEs) with the aid of Fischer-Burmeister NCP-function. Additionally, the system of NAEs is solved by the SHM, which is globally convergent and can get rid of calculating the inverse of Jacobian matrix. In SHM, by introducing a scalar homotopy function and…
  • More
  •   Views:620       Downloads:488        Download PDF
  • A Quasi-Boundary Semi-Analytical Approach for Two-Dimensional Backward Heat Conduction Problems
  • Abstract In this article, we propose a semi-analytical method to tackle the two-dimensional backward heat conduction problem (BHCP) by using a quasi-boundary idea. First, the Fourier series expansion technique is employed to calculate the temperature field u(x, y, t) at any time t < T. Second, we consider a direct regularization by adding an extra termau(x, y, 0) to reach a second-kind Fredholm integral equation for u(x, y, 0). The termwise separable property of the kernel function permits us to obtain a closed-form regularized solution. Besides, a strategy to choose the regularization parameter is suggested. When several numerical examples were tested,…
  • More
  •   Views:564       Downloads:456        Download PDF
  • On Pseudo-Elastic Models for Stress Softening in Elastomeric Balloons
  • Abstract The phenomenon of stress softening observed in the cyclic inflation of spherical balloons or membranes is quantitatively and qualitatively examined. A new measure of the stress softening extent is proposed which correctly captures the main feature of this phenomenon. This measure of the stress softening is related to the relevant response functions in the constitutive models proposed in the literature to describe this effect. Using these relationships, the predictive capability of the theoretical models is examined. It is shown that only those theoretical models which admit a non-monotone character of the stress softening can properly describe this phenomenon.
  • More
  •   Views:552       Downloads:498        Download PDF
  • Meshless Local Petrov-Galerkin (MLPG) Method for Laminate Plates under Dynamic Loading
  • Abstract A meshless local Petrov-Galerkin (MLPG) method is applied to solve laminate plate problems described by the Reissner-Mindlin theory. Both stationary and transient dynamic loads are analyzed here. The bending moment and the shear force expressions are obtained by integration through the laminated plate for the considered constitutive equations in each lamina. The Reissner-Mindlin theory reduces the original three-dimensional (3-D) thick plate problem to a two-dimensional (2-D) problem. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding this node. The weak-form on small subdomains with a Heaviside step…
  • More
  •   Views:571       Downloads:456        Download PDF
  • Statistics of High Purity Nickel Microstructure From High Energy X-ray Diffraction Microscopy
  • Abstract We have measured and reconstructed via forward modeling a small volume of microstructure of high purity, well annealed nickel using high energy x-ray diffraction microscopy (HEDM). Statistical distributions characterizing grain orientations, intra-granular misorientations, and nearest neighbor grain misorientations are extracted. Results are consistent with recent electron backscatter diffraction measurements. Peaks in the grain neighbor misorientation angle distribution at 60 degrees (∑3) and 39 degrees (∑9) have resolution limited widths of ≈ 0.14 degree FWHM. The analysis demonstrates that HEDM can recover grain and grain boundary statistics comparable to OIM volume measurements; more extensive data sets will lead to full, five…
  • More
  •   Views:591       Downloads:524        Download PDF
  • Measurements of the Curvature of Protrusions/Retrusions on Migrating Recrystallization Boundaries
  • Abstract Two methods to quantify protrusions/retrusions and to estimate local boundary curvature from sample plane sections are proposed. The methods are used to evaluate the driving force due to curvature of the protrusions/retrusions for partially recrystallized pure nickel cold rolled to 96% reduction in thickness. The results reveal that the values calculated by both these methods are reasonable when compared with the stored energy measured by differential scanning calorimetry. The relationship between protrusions and the average stored energy density in the deformed matrix is also investigated for partially recrystallized pure aluminum cold rolled to 50%. The results show that the local…
  • More
  •   Views:534       Downloads:492        Download PDF
  • EBSD-Based Microscopy: Resolution of Dislocation Density
  • Abstract Consideration is given to the resolution of dislocation density afforded by EBSD-based scanning electron microscopy. Comparison between the conventional Hough- and the emerging high-resolution cross-correlation-based approaches is made. It is illustrated that considerable care must be exercised in selecting a step size (Burger's circuit size) for experimental measurements. Important variables affecting this selection include the dislocation density and the physical size and density of dislocation dipole and multi-pole components of the structure. It is also illustrated that simulations can be useful to the interpretation of experimental recoveries.
  • More
  •   Views:603       Downloads:688        Download PDF
Displaying 9961-9970 on page 997 of 10058. Per Page