Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22,113)
  • Open Access

    ARTICLE

    Traffic-Aware Fuzzy Classification Model to Perform IoT Data Traffic Sourcing with the Edge Computing

    Huixiang Xu*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2309-2335, 2024, DOI:10.32604/cmc.2024.046253

    Abstract The Internet of Things (IoT) has revolutionized how we interact with and gather data from our surrounding environment. IoT devices with various sensors and actuators generate vast amounts of data that can be harnessed to derive valuable insights. The rapid proliferation of Internet of Things (IoT) devices has ushered in an era of unprecedented data generation and connectivity. These IoT devices, equipped with many sensors and actuators, continuously produce vast volumes of data. However, the conventional approach of transmitting all this data to centralized cloud infrastructures for processing and analysis poses significant challenges. However, transmitting all this data to a… More >

  • Open Access

    ARTICLE

    Cross-Project Software Defect Prediction Based on SMOTE and Deep Canonical Correlation Analysis

    Xin Fan1,2, Shuqing Zhang1,2,*, Kaisheng Wu1,2, Wei Zheng1,2, Yu Ge1,2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1687-1711, 2024, DOI:10.32604/cmc.2023.046187

    Abstract Cross-Project Defect Prediction (CPDP) is a method that utilizes historical data from other source projects to train predictive models for defect prediction in the target project. However, existing CPDP methods only consider linear correlations between features (indicators) of the source and target projects. These models are not capable of evaluating non-linear correlations between features when they exist, for example, when there are differences in data distributions between the source and target projects. As a result, the performance of such CPDP models is compromised. In this paper, this paper proposes a novel CPDP method based on Synthetic Minority Oversampling Technique (SMOTE)… More >

  • Open Access

    ARTICLE

    Target Detection Algorithm in Foggy Scenes Based on Dual Subnets

    Yuecheng Yu1,*, Liming Cai1, Anqi Ning1, Jinlong Shi1, Xudong Chen2, Shixin Huang1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1915-1931, 2024, DOI:10.32604/cmc.2024.046125

    Abstract Under the influence of air humidity, dust, aerosols, etc., in real scenes, haze presents an uneven state. In this way, the image quality and contrast will decrease. In this case, It is difficult to detect the target in the image by the universal detection network. Thus, a dual subnet based on multi-task collaborative training (DSMCT) is proposed in this paper. Firstly, in the training phase, the Gated Context Aggregation Network (GCANet) is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes. In the test phase, only the YOLOX branch needs to be… More >

  • Open Access

    ARTICLE

    A Blockchain and CP-ABE Based Access Control Scheme with Fine-Grained Revocation of Attributes in Cloud Health

    Ye Lu1,*, Tao Feng1, Chunyan Liu2, Wenbo Zhang3

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2787-2811, 2024, DOI:10.32604/cmc.2023.046106

    Abstract The Access control scheme is an effective method to protect user data privacy. The access control scheme based on blockchain and ciphertext policy attribute encryption (CP–ABE) can solve the problems of single—point of failure and lack of trust in the centralized system. However, it also brings new problems to the health information in the cloud storage environment, such as attribute leakage, low consensus efficiency, complex permission updates, and so on. This paper proposes an access control scheme with fine-grained attribute revocation, keyword search, and traceability of the attribute private key distribution process. Blockchain technology tracks the authorization of attribute private… More >

  • Open Access

    ARTICLE

    Facial Expression Recognition with High Response-Based Local Directional Pattern (HR-LDP) Network

    Sherly Alphonse*, Harshit Verma

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2067-2086, 2024, DOI:10.32604/cmc.2024.046070

    Abstract Although lots of research has been done in recognizing facial expressions, there is still a need to increase the accuracy of facial expression recognition, particularly under uncontrolled situations. The use of Local Directional Patterns (LDP), which has good characteristics for emotion detection has yielded encouraging results. An innovative end-to-end learnable High Response-based Local Directional Pattern (HR-LDP) network for facial emotion recognition is implemented by employing fixed convolutional filters in the proposed work. By combining learnable convolutional layers with fixed-parameter HR-LDP layers made up of eight Kirsch filters and derivable simulated gate functions, this network considerably minimizes the number of network… More >

  • Open Access

    ARTICLE

    AutoRhythmAI: A Hybrid Machine and Deep Learning Approach for Automated Diagnosis of Arrhythmias

    S. Jayanthi*, S. Prasanna Devi

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2137-2158, 2024, DOI:10.32604/cmc.2024.045975

    Abstract In healthcare, the persistent challenge of arrhythmias, a leading cause of global mortality, has sparked extensive research into the automation of detection using machine learning (ML) algorithms. However, traditional ML and AutoML approaches have revealed their limitations, notably regarding feature generalization and automation efficiency. This glaring research gap has motivated the development of AutoRhythmAI, an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias. Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection, effectively bridging the gap between data preprocessing and model selection. To validate our system, we have rigorously… More >

  • Open Access

    ARTICLE

    Improved Data Stream Clustering Method: Incorporating KD-Tree for Typicality and Eccentricity-Based Approach

    Dayu Xu1,#, Jiaming Lü1,#, Xuyao Zhang2, Hongtao Zhang1,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2557-2573, 2024, DOI:10.32604/cmc.2024.045932

    Abstract Data stream clustering is integral to contemporary big data applications. However, addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research. This paper aims to elevate the efficiency and precision of data stream clustering, leveraging the TEDA (Typicality and Eccentricity Data Analysis) algorithm as a foundation, we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm. The original TEDA algorithm, grounded in the concept of “Typicality and Eccentricity Data Analytics”, represents an evolving and recursive method that requires no prior knowledge. While the… More >

  • Open Access

    ARTICLE

    An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem

    Zhaolin Lv1, Yuexia Zhao2, Hongyue Kang3,*, Zhenyu Gao3, Yuhang Qin4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2337-2360, 2024, DOI:10.32604/cmc.2023.045826

    Abstract Flexible job shop scheduling problem (FJSP) is the core decision-making problem of intelligent manufacturing production management. The Harris hawk optimization (HHO) algorithm, as a typical metaheuristic algorithm, has been widely employed to solve scheduling problems. However, HHO suffers from premature convergence when solving NP-hard problems. Therefore, this paper proposes an improved HHO algorithm (GNHHO) to solve the FJSP. GNHHO introduces an elitism strategy, a chaotic mechanism, a nonlinear escaping energy update strategy, and a Gaussian random walk strategy to prevent premature convergence. A flexible job shop scheduling model is constructed, and the static and dynamic FJSP is investigated to minimize… More >

  • Open Access

    ARTICLE

    Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence

    Ali Hamid Farea1,*, Omar H. Alhazmi1, Kerem Kucuk2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1525-1545, 2024, DOI:10.32604/cmc.2023.045794

    Abstract While emerging technologies such as the Internet of Things (IoT) have many benefits, they also pose considerable security challenges that require innovative solutions, including those based on artificial intelligence (AI), given that these techniques are increasingly being used by malicious actors to compromise IoT systems. Although an ample body of research focusing on conventional AI methods exists, there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures. To contribute to this nascent research stream, a novel AI-driven security system denoted as “AI2AI” is presented in this work. AI2AI employs AI techniques to… More >

  • Open Access

    ARTICLE

    Detecting APT-Exploited Processes through Semantic Fusion and Interaction Prediction

    Bin Luo1,2,3, Liangguo Chen1,2,3, Shuhua Ruan1,2,3,*, Yonggang Luo2,3,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1731-1754, 2024, DOI:10.32604/cmc.2023.045739

    Abstract Considering the stealthiness and persistence of Advanced Persistent Threats (APTs), system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host. Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks, and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection, which requires lots of manual efforts to locate attack entities. This paper proposes an APT-exploited process detection approach called ThreatSniffer, which constructs the benign provenance graph from attack-free audit logs, fits normal system entity… More >

Displaying 641-650 on page 65 of 22113. Per Page