Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8,092)
  • Open Access

    ARTICLE

    Heating the Future: Solar Hot Water Collectors for Energy-Efficient Homes in Sweden

    Mehran Karimi1, Hesamodin Heidarigoujani1, Mehdi Jahangiri1,*, Milad Torabi Anaraki2, Daryosh Mohamadi Janaki3

    Energy Engineering, DOI:10.32604/ee.2025.070190

    Abstract The technical, economic, and environmental performance of solar hot-water (SWH) systems for Swedish residential apartments—where approximately 80% of household energy is devoted to space heating and sanitary hot-water production—was assessed. Two collector types, flat plate (FP) and evacuated tube (ET), were simulated in TSOL Pro 5.5 for five major cities (Stockholm, Göteborg, Malmö, Uppsala, Linköping). Climatic data and cold-water temperatures were sourced from Meteonorm 7.1, and economic parameters were derived from recent national statistics and literature. All calculations explicitly accounted for heat losses from collectors, storage tanks, and internal and external piping systems, and established… More >

  • Open Access

    ARTICLE

    Optimal Working Fluid Selection and Performance Enhancement of ORC Systems for Diesel Engine Waste Heat Recovery

    Zujun Ding, Shuaichao Wu, Chenliang Ji, Xinyu Feng, Yuanyuan Shi, Baolian Liu, Wan Chen, Qiuchan Bai, Hengrui Zhou, Hui Huang, Jie Ji*

    Energy Engineering, DOI:10.32604/ee.2025.068106

    Abstract In the quest to enhance energy efficiency and reduce environmental impact in the transportation sector, the recovery of waste heat from diesel engines has become a critical area of focus. This study provided an exhaustive thermodynamic analysis optimizing Organic Rankine Cycle (ORC) systems for waste heat recovery from diesel engines. The study assessed the performance of five candidate working fluids—R11, R123, R113, R245fa, and R141b—under a range of operating conditions, specifically varying overheat temperatures and evaporation pressures. The results indicated that the choice of working fluid substantially influences the system’s exergetic efficiency, net output power,… More >

  • Open Access

    ARTICLE

    Learning-Based Prediction of Soft-Tissue Motion for Latency Compensation in Teleoperation

    Guangyu Xu1,2, Yuxin Liu1, Bo Yang1, Siyu Lu3,*, Chao Liu4, Junmin Lyu5, Wenfeng Zheng1,*

    CMES-Computer Modeling in Engineering & Sciences, DOI:10.32604/cmes.2025.074938

    Abstract Soft-tissue motion introduces significant challenges in robotic teleoperation, especially in medical scenarios where precise target tracking is critical. Latency across sensing, computation, and actuation chains leads to degraded tracking performance, particularly around high-acceleration segments and trajectory inflection points. This study investigates machine learning-based predictive compensation for latency mitigation in soft-tissue tracking. Three models—autoregressive (AR), long short-term memory (LSTM), and temporal convolutional network (TCN)—were implemented and evaluated on both synthetic and real datasets. By aligning the prediction horizon with the end-to-end system delay, we demonstrate that prediction-based compensation significantly reduces tracking errors. Among the models, TCN More >

  • Open Access

    ARTICLE

    A Comparative Benchmark of Machine and Deep Learning for Cyberattack Detection in IoT Networks

    Enzo Hoummady*, Fehmi Jaafar

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.074897

    Abstract With the proliferation of Internet of Things (IoT) devices, securing these interconnected systems against cyberattacks has become a critical challenge. Traditional security paradigms often fail to cope with the scale and diversity of IoT network traffic. This paper presents a comparative benchmark of classic machine learning (ML) and state-of-the-art deep learning (DL) algorithms for IoT intrusion detection. Our methodology employs a two-phased approach: a preliminary pilot study using a custom-generated dataset to establish baselines, followed by a comprehensive evaluation on the large-scale CICIoTDataset2023. We benchmarked algorithms including Random Forest, XGBoost, CNN, and Stacked LSTM. The… More >

  • Open Access

    REVIEW

    Prompt Injection Attacks on Large Language Models: A Survey of Attack Methods, Root Causes, and Defense Strategies

    Tongcheng Geng1,#, Zhiyuan Xu2,#, Yubin Qu3,*, W. Eric Wong4

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.074081

    Abstract Large language models (LLMs) have revolutionized AI applications across diverse domains. However, their widespread deployment has introduced critical security vulnerabilities, particularly prompt injection attacks that manipulate model behavior through malicious instructions. Following Kitchenham’s guidelines, this systematic review synthesizes 128 peer-reviewed studies from 2022 to 2025 to provide a unified understanding of this rapidly evolving threat landscape. Our findings reveal a swift progression from simple direct injections to sophisticated multimodal attacks, achieving over 90% success rates against unprotected systems. In response, defense mechanisms show varying effectiveness: input preprocessing achieves 60%–80% detection rates and advanced architectural defenses More >

  • Open Access

    ARTICLE

    Numerical Investigation of Porosity and Aggregate Volume Ratio Effects on the Mechanical Behavior of Lightweight Aggregate Concrete

    Safwan Al-sayed1, Xi Wang1, Yijiang Peng1,*, Esraa Hyarat2, Ahmad Ali AlZubi3

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.074068

    Abstract In modern construction, Lightweight Aggregate Concrete (LWAC) has been recognized as a vital material of concern because of its unique properties, such as reduced density and improved thermal insulation. Despite the extensive knowledge regarding its macroscopic properties, there is a wide knowledge gap in understanding the influence of microscale parameters like aggregate porosity and volume ratio on the mechanical response of LWAC. This study aims to bridge this knowledge gap, spurred by the need to enhance the predictability and applicability of LWAC in various construction environments. With the help of advanced numerical methods, including the… More >

  • Open Access

    ARTICLE

    Big Data-Driven Federated Learning Model for Scalable and Privacy-Preserving Cyber Threat Detection in IoT-Enabled Healthcare Systems

    Noura Mohammed Alaskar1, Muzammil Hussain2, Saif Jasim Almheiri1, Atta-ur-Rahman3, Adnan Khan4,5,6, Khan M. Adnan7,*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.074041

    Abstract The increasing number of interconnected devices and the incorporation of smart technology into contemporary healthcare systems have significantly raised the attack surface of cyber threats. The early detection of threats is both necessary and complex, yet these interconnected healthcare settings generate enormous amounts of heterogeneous data. Traditional Intrusion Detection Systems (IDS), which are generally centralized and machine learning-based, often fail to address the rapidly changing nature of cyberattacks and are challenged by ethical concerns related to patient data privacy. Moreover, traditional AI-driven IDS usually face challenges in handling large-scale, heterogeneous healthcare data while ensuring data… More >

  • Open Access

    ARTICLE

    Semantic-Guided Stereo Matching Network Based on Parallax Attention Mechanism and SegFormer

    Zeyuan Chen, Yafei Xie, Jinkun Li, Song Wang, Yingqiang Ding*

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.073846

    Abstract Stereo matching is a pivotal task in computer vision, enabling precise depth estimation from stereo image pairs, yet it encounters challenges in regions with reflections, repetitive textures, or fine structures. In this paper, we propose a Semantic-Guided Parallax Attention Stereo Matching Network (SGPASMnet) that can be trained in unsupervised manner, building upon the Parallax Attention Stereo Matching Network (PASMnet). Our approach leverages unsupervised learning to address the scarcity of ground truth disparity in stereo matching datasets, facilitating robust training across diverse scene-specific datasets and enhancing generalization. SGPASMnet incorporates two novel components: a Cross-Scale Feature Interaction… More >

  • Open Access

    ARTICLE

    A Hybrid Vision Transformer with Attention Architecture for Efficient Lung Cancer Diagnosis

    Abdu Salam1, Fahd M. Aldosari2, Donia Y. Badawood3, Farhan Amin4,*, Isabel de la Torre5,*, Gerardo Mendez Mezquita6, Henry Fabian Gongora6

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.073342

    Abstract Lung cancer remains a major global health challenge, with early diagnosis crucial for improved patient survival. Traditional diagnostic techniques, including manual histopathology and radiological assessments, are prone to errors and variability. Deep learning methods, particularly Vision Transformers (ViT), have shown promise for improving diagnostic accuracy by effectively extracting global features. However, ViT-based approaches face challenges related to computational complexity and limited generalizability. This research proposes the DualSet ViT-PSO-SVM framework, integrating a ViT with dual attention mechanisms, Particle Swarm Optimization (PSO), and Support Vector Machines (SVM), aiming for efficient and robust lung cancer classification across multiple… More >

  • Open Access

    ARTICLE

    Multi-Area Path Planning for Multiple Unmanned Surface Vessels

    Jianing Wu1, Yufeng Chen1,*, Li Yin1, Huajun He2, Panshuan Jin2

    CMC-Computers, Materials & Continua, DOI:10.32604/cmc.2025.072937

    Abstract To conduct marine surveys, multiple unmanned surface vessels (Multi-USV) with different capabilities perform collaborative mapping in multiple designated areas. This paper proposes a task allocation algorithm based on integer linear programming (ILP) with flow balance constraints, ensuring the fair and efficient distribution of sub-areas among USVs and maintaining strong connectivity of assigned regions. In the established grid map, a search-based path planning algorithm is performed on the sub-areas according to the allocation scheme. It uses the greedy algorithm and the A* algorithm to achieve complete coverage of the barrier-free area and obtain an efficient trajectory More >

Displaying 591-600 on page 60 of 8092. Per Page