Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (31,589)
  • Open Access

    ARTICLE

    Optimized Tuning of LOADng Routing Protocol Parameters for IoT

    Divya Sharma1,*, Sanjay Jain2, Vivek Maik3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1549-1561, 2023, DOI:10.32604/csse.2023.035031 - 09 February 2023

    Abstract Interconnected devices and intelligent applications have slashed human intervention in the Internet of Things (IoT), making it possible to accomplish tasks with less human interaction. However, it faces many problems, including lower capacity links, energy utilization, enhancement of resources and limited resources due to its openness, heterogeneity, limited resources and extensiveness. It is challenging to route packets in such a constrained environment. In an IoT network constrained by limited resources, minimal routing control overhead is required without packet loss. Such constrained environments can be improved through the optimal routing protocol. It is challenging to route… More >

  • Open Access

    ARTICLE

    ILSM: Incorporated Lightweight Security Model for Improving QOS in WSN

    Ansar Munir Shah1, Mohammed Aljubayri2, Muhammad Faheem Khan1, Jarallah Alqahtani2,*, Mahmood ul Hassan3, Adel Sulaiman2, Asadullah Shaikh2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2471-2488, 2023, DOI:10.32604/csse.2023.034951 - 09 February 2023

    Abstract In the network field, Wireless Sensor Networks (WSN) contain prolonged attention due to afresh augmentations. Industries like health care, traffic, defense, and many more systems espoused the WSN. These networks contain tiny sensor nodes containing embedded processors, Tiny OS, memory, and power source. Sensor nodes are responsible for forwarding the data packets. To manage all these components, there is a need to select appropriate parameters which control the quality of service of WSN. Multiple sensor nodes are involved in transmitting vital information, and there is a need for secure and efficient routing to reach the… More >

  • Open Access

    ARTICLE

    BS-SC Model: A Novel Method for Predicting Child Abuse Using Borderline-SMOTE Enabled Stacking Classifier

    Saravanan Parthasarathy, Arun Raj Lakshminarayanan*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1311-1336, 2023, DOI:10.32604/csse.2023.034910 - 09 February 2023

    Abstract For a long time, legal entities have developed and used crime prediction methodologies. The techniques are frequently updated based on crime evaluations and responses from scientific communities. There is a need to develop type-based crime prediction methodologies that can be used to address issues at the subgroup level. Child maltreatment is not adequately addressed because children are voiceless. As a result, the possibility of developing a model for predicting child abuse was investigated in this study. Various exploratory analysis methods were used to examine the city of Chicago’s child abuse events. The data set was… More >

  • Open Access

    ARTICLE

    ViT2CMH: Vision Transformer Cross-Modal Hashing for Fine-Grained Vision-Text Retrieval

    Mingyong Li, Qiqi Li, Zheng Jiang, Yan Ma*

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1401-1414, 2023, DOI:10.32604/csse.2023.034757 - 09 February 2023

    Abstract In recent years, the development of deep learning has further improved hash retrieval technology. Most of the existing hashing methods currently use Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to process image and text information, respectively. This makes images or texts subject to local constraints, and inherent label matching cannot capture fine-grained information, often leading to suboptimal results. Driven by the development of the transformer model, we propose a framework called ViT2CMH mainly based on the Vision Transformer to handle deep Cross-modal Hashing tasks rather than CNNs or RNNs. Specifically, we use a More >

  • Open Access

    ARTICLE

    Enhanced Adaptive Brain-Computer Interface Approach for Intelligent Assistance to Disabled Peoples

    Ali Usman1, Javed Ferzund1, Ahmad Shaf1, Muhammad Aamir1, Samar Alqhtani2,*, Khlood M. Mehdar3, Hanan Talal Halawani4, Hassan A. Alshamrani5, Abdullah A. Asiri5, Muhammad Irfan6

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1355-1369, 2023, DOI:10.32604/csse.2023.034682 - 09 February 2023

    Abstract Assistive devices for disabled people with the help of Brain-Computer Interaction (BCI) technology are becoming vital bio-medical engineering. People with physical disabilities need some assistive devices to perform their daily tasks. In these devices, higher latency factors need to be addressed appropriately. Therefore, the main goal of this research is to implement a real-time BCI architecture with minimum latency for command actuation. The proposed architecture is capable to communicate between different modules of the system by adopting an automotive, intelligent data processing and classification approach. Neuro-sky mind wave device has been used to transfer the… More >

  • Open Access

    ARTICLE

    Semiconducting SWCNT Photo Detector for High Speed Switching Through Single Halo Doping

    A. Arulmary1,*, V. Rajamani2, T. Kavitha2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1617-1630, 2023, DOI:10.32604/csse.2023.034681 - 09 February 2023

    Abstract The method opted for accuracy, and no existing studies are based on this method. A design and characteristic survey of a new small band gap semiconducting Single Wall Carbon Nano Tube (SWCNT) Field Effect Transistor as a photodetector is carried out. In the proposed device, better performance is achieved by increasing the diameter and introducing a new single halo (SH) doping in the channel length of the CNTFET device. This paper is a study and analysis of the performance of a Carbon Nano Tube Field Effect Transistor (CNTFET) as a photodetector using the self-consistent Poisson… More >

  • Open Access

    ARTICLE

    Histogram-Based Decision Support System for Extraction and Classification of Leukemia in Blood Smear Images

    Neenavath Veeraiah1,*, Youseef Alotaibi2, Ahmad F. Subahi3

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1879-1900, 2023, DOI:10.32604/csse.2023.034658 - 09 February 2023

    Abstract An abnormality that develops in white blood cells is called leukemia. The diagnosis of leukemia is made possible by microscopic investigation of the smear in the periphery. Prior training is necessary to complete the morphological examination of the blood smear for leukemia diagnosis. This paper proposes a Histogram Threshold Segmentation Classifier (HTsC) for a decision support system. The proposed HTsC is evaluated based on the color and brightness variation in the dataset of blood smear images. Arithmetic operations are used to crop the nucleus based on automated approximation. White Blood Cell (WBC) segmentation is calculated… More >

  • Open Access

    ARTICLE

    Design of Six Element MIMO Antenna with Enhanced Gain for 28/38 GHz mm-Wave 5G Wireless Application

    K. Jayanthi1,*, A. M. Kalpana2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1689-1705, 2023, DOI:10.32604/csse.2023.034613 - 09 February 2023

    Abstract The fifth-generation (5G) wireless technology is the most recent standardization in communication services of interest across the globe. The concept of Multiple-Input-Multiple-Output antenna (MIMO) systems has recently been incorporated to operate at higher frequencies without limitations. This paper addresses, design of a high-gain MIMO antenna that offers a bandwidth of 400 MHz and 2.58 GHz by resonating at 28 and 38 GHz, respectively for 5G millimeter (mm)-wave applications. The proposed design is developed on a RT Duroid 5880 substrate with a single elemental dimension of 9.53 × 7.85 × 0.8 mm3. The patch antenna is fully grounded and is fed with More >

  • Open Access

    ARTICLE

    Contrastive Clustering for Unsupervised Recognition of Interference Signals

    Xiangwei Chen1, Zhijin Zhao1,2,*, Xueyi Ye1, Shilian Zheng2, Caiyi Lou2, Xiaoniu Yang2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1385-1400, 2023, DOI:10.32604/csse.2023.034543 - 09 February 2023

    Abstract Interference signals recognition plays an important role in anti-jamming communication. With the development of deep learning, many supervised interference signals recognition algorithms based on deep learning have emerged recently and show better performance than traditional recognition algorithms. However, there is no unsupervised interference signals recognition algorithm at present. In this paper, an unsupervised interference signals recognition method called double phases and double dimensions contrastive clustering (DDCC) is proposed. Specifically, in the first phase, four data augmentation strategies for interference signals are used in data-augmentation-based (DA-based) contrastive learning. In the second phase, the original dataset’s k-nearest… More >

  • Open Access

    ARTICLE

    Battle Royale Optimization with Fuzzy Deep Learning for Arabic Sentiment Classification

    Manar Ahmed Hamza1,*, Hala J. Alshahrani2, Jaber S. Alzahrani3, Heba Mohsen4, Mohamed I. Eldesouki5, Mohammed Rizwanullah1

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2619-2635, 2023, DOI:10.32604/csse.2023.034519 - 09 February 2023

    Abstract Aspect-Based Sentiment Analysis (ABSA) on Arabic corpus has become an active research topic in recent days. ABSA refers to a fine-grained Sentiment Analysis (SA) task that focuses on the extraction of the conferred aspects and the identification of respective sentiment polarity from the provided text. Most of the prevailing Arabic ABSA techniques heavily depend upon dreary feature-engineering and pre-processing tasks and utilize external sources such as lexicons. In literature, concerning the Arabic language text analysis, the authors made use of regular Machine Learning (ML) techniques that rely on a group of rare sources and tools.… More >

Displaying 10301-10310 on page 1031 of 31589. Per Page