Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,132)
  • Open Access

    ARTICLE

    Chitosan/Sodium Alginate Multilayer pH-Sensitive Films Based on Layer-by-Layer Self-Assembly for Intelligent Packaging

    Mingxuan He1, Yahui Zheng1, Jiaming Shen1, Jiawei Shi1, Yongzheng Zhang1, Yinghong Xiao2,*, Jianfei Che1,*

    Journal of Renewable Materials, Vol.12, No.2, pp. 215-233, 2024, DOI:10.32604/jrm.2023.043659

    Abstract

    The abuse of plastic food packaging has brought about severe white pollution issues around the world. Developing green and sustainable biomass packaging is an effective way to solve this problem. Hence, a chitosan/sodium alginate-based multilayer film is fabricated via a layer-by-layer (LBL) self-assembly method. With the help of superior interaction between the layers, the multilayer film possesses excellent mechanical properties (with a tensile strength of 50 MPa). Besides, the film displays outstanding water retention property (blocking moisture of 97.56%) and ultraviolet blocking property. Anthocyanin is introduced into the film to detect the food quality since it is one natural plant… More > Graphic Abstract

    Chitosan/Sodium Alginate Multilayer pH-Sensitive Films Based on Layer-by-Layer Self-Assembly for Intelligent Packaging

  • Open Access

    ARTICLE

    Activated Carbon from Nipa Palm Fronds (Nypa fruticans) with H3PO4 and KOH Activators as Fe Adsorbers

    Ninis Hadi Haryanti1,*, Eka Suarso1, Tetti N. Manik1, Suryajaya1, Nurlita Sari1, Darminto2

    Journal of Renewable Materials, Vol.12, No.2, pp. 203-214, 2024, DOI:10.32604/jrm.2023.043549

    Abstract Nipa palm is one of the non-wood plants rich in lignocellulosic content. In this study, palm fronds were converted into activated carbon, and their physical, chemical, and morphological properties were characterized. The resulting activated carbon was then applied as an adsorbent of Fe metal in peat water. The carbonization process was carried out for 60 min, followed by sintering at 400°C for 5 h with a particle size of 200 mesh. KOH and H3PO4 were used in the chemical activation process for 24 h. KOH-activated carbon contained 6.13% of moisture, 4.55% of ash, 17.02% of volatile matter, and 78.84% of… More > Graphic Abstract

    Activated Carbon from Nipa Palm Fronds (<i>Nypa fruticans</i>) with H<sub>3</sub>PO<sub>4</sub> and KOH Activators as Fe Adsorbers

  • Open Access

    ARTICLE

    Optimizing Household Wastes (Rice, Vegetables, and Fruit) as an Environmentally Friendly Electricity Generator

    Deni Ainur Rokhim1,2, Isma Yanti Vitarisma1, Sumari Sumari1,*, Yudhi Utomo1, Muhammad Roy Asrori1

    Journal of Renewable Materials, Vol.12, No.2, pp. 275-284, 2024, DOI:10.32604/jrm.2023.043419

    Abstract The high consumption of electricity and issues related to fossil energy have triggered an increase in energy prices and the scarcity of fossil resources. Consequently, many researchers are seeking alternative energy sources. One potential technology, the Microbial Fuel Cell (MFC) based on rice, vegetable, and fruit wastes, can convert chemical energy into electrical energy. This study aims to determine the potency of rice, vegetable, and fruit waste assisted by Cu/Mg electrodes as a generator of electricity. The method used was a laboratory experiment, including the following steps: electrode preparation, waste sample preparation, incubation of the waste samples, construction of a… More >

  • Open Access

    ARTICLE

    CoS Nanosheets Coated with Dopamine-Derived Carbon Standing on Carbon Fiber Cloth as Binder-Free Anode for Li-ion Batteries

    Lianyuan Ji1, Mingchen Shi1, Zengkai Feng2, Hui Yang1,*

    Journal of Renewable Materials, Vol.12, No.2, pp. 259-274, 2024, DOI:10.32604/jrm.2023.030599

    Abstract

    Cobalt sulphides attract much attention as anode materials for Li-ion batteries (LIBs). However, its poor conductivity, low initial column efficiency and large volume changes during cycling have hindered its further development. Herein, novel interlaced CoS nanosheets were firstly prepared on Carbon Fiber Cloth (CFC) by two hydrothermal reactions followed with carbon coating via carbonizing dopamine (CoS NS@C/CFC). As a freestanding anode, the nanosheet structure of CoS not only accommodates the volume variation, but also provides a large interface area to proceed the charge transfer reaction. In addition, CFC works as both a three-dimensional skeleton and an active substance which can… More >

  • Open Access

    ARTICLE

    Preparation of Environmentally Friendly Urea-Hexanediamine-Glyoxal (HUG) Resin Wood Adhesive

    Qianyu Zhang1,2,#, Shi Chen1,2,#, Long Cao1,2, Hong Lei3, Antonio Pizzi4, Xuedong Xi1,2,*, Guanben Du1,2

    Journal of Renewable Materials, Vol.12, No.2, pp. 235-244, 2024, DOI:10.32604/jrm.2023.029537

    Abstract Using non-toxic, low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal (UG) resin adhesive is a hot research topic that could be of great interest for the wood industry. However, urea-glyoxal (UG) resins prepared by just using glyoxal instead of formaldehyde usually yields a lower degree of polymerization. This results in a poorer bonding performance and water resistance of UG resins. A good solution is to pre-react urea to preform polyurea molecules presenting already a certain degree of polymerization, and then to condense these with glyoxal to obtain a novel UG resin. Therefore, in this present work, the urea was… More > Graphic Abstract

    Preparation of Environmentally Friendly Urea-Hexanediamine-Glyoxal (HUG) Resin Wood Adhesive

  • Open Access

    REVIEW

    Advanced Thermochemical Conversion Approaches for Green Hydrogen Production from Crop Residues

    Omojola Awogbemi*, Ayotunde Adigun Ojo, Samson Adedayo Adeleye

    Journal of Renewable Materials, Vol.12, No.1, pp. 1-28, 2024, DOI:10.32604/jrm.2023.045822

    Abstract The huge volumes of crop residues generated during the production, processing, and consumption of farm products constitute an ecological nuisance when ineffectively managed. The conversion of crop residues to green hydrogen is one of the sustainable management strategies for ubiquitous crop residues. Production of green hydrogen from crop residue sources will contribute to deepening access to clean and affordable energy, mitigating climate change, and ensuring environmental sustainability. However, the deployment of conventional thermochemical technologies for the conversion of crop residues to green hydrogen is costly, requires long residence time, produces low-quality products, and therefore needs to be upgraded. The current… More >

  • Open Access

    ARTICLE

    Repair of Second-Generation Recycled Fine Aggregate of Waste Concrete from Freeze-Thaw Environment by Carbonation Treatment

    Jie Huang*, Rongbin Jiang, Xiaobo Sun, Yingyong Shuai

    Journal of Renewable Materials, Vol.12, No.1, pp. 187-201, 2024, DOI:10.32604/jrm.2023.044232

    Abstract The reuse of waste recycled concrete from harsh environments has become a research hotspot in the field of construction. This study investigated the repair effect of carbonation treatment on second-generation recycled fine aggregate (SRFA) obtained from recycled fine aggregate concrete (RFAC) subjected to freeze-thaw (FT) cycles. Before and after carbonation, the properties of SRFA were evaluated. Carbonated second-generation recycled fine aggregate (CSRFA) at five substitution rates (0%, 25%, 50%, 75%, 100%) to replace SRFA was used to prepare carbonated second-generation recycled fine aggregate concrete (CSRFAC). The water absorption, porosity and mechanical properties of CSRFAC were tested, and its frost-resisting durability… More >

  • Open Access

    ARTICLE

    Histological Assessment of Bone Regeneration in the Maxilla with Homologous Bone Graft: A Feasible Option for Maxillary Bone Reconstruction

    Sergio Henrique Gonçalves Motta1, Ana Paula Ramos Soares1, Juliana Campos Hasse Fernandes2, Gustavo Vicentis Oliveira Fernandes2,3,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 131-148, 2024, DOI:10.32604/jrm.2023.043940

    Abstract Bone biomaterials have been increasingly used to reconstruct maxillary atrophic ridges. Thus, the aim of this study was to evaluate bone reconstruction in the maxilla using a homologous cortico-cancellous FFB (lyophilized) graft and verify its reliability. Eight individuals were included from 2014 to 2018. The first surgery was performed to install homologous bone blocks in the maxilla. The period of the second intervention varied between 5 months and 15 days to 11 months (≈7.93 months). The biopsies were taken from the central region of the matured graft during the surgery for implant placement. All patients presented clinical and radiographic conditions… More >

  • Open Access

    ARTICLE

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

    Thean Heng Tan1, Najihah Mohd Hashim2, Wageeh Abdulhadi Yehya Dabdawb1, Mochamad Zakki Fahmi3,*, Hwei Voon Lee1,*

    Journal of Renewable Materials, Vol.12, No.1, pp. 29-43, 2024, DOI:10.32604/jrm.2023.043449

    Abstract The study focuses on the development of biocompatible and stable FA-functionalized nanocrystalline cellulose (NCC) as a potential drug delivery system for targeting folate receptor-positive cancer cells. The FA-functionalized NCCs were synthesized through a series of chemical reactions, resulting in nanoparticles with favorable properties for biomedical applications. The microstructural analysis revealed that the functionalized NCCs maintained their rod-shaped morphology and displayed hydrodynamic diameters suitable for evading the mononuclear phagocytic system while being large enough to target tumor tissues. Importantly, these nanoparticles possessed a negative surface charge, enhancing their stability and repelling potential aggregation. The binding specificity of FA-functionalized NCCs to folate… More > Graphic Abstract

    Folic Acid-Functionalized Nanocrystalline Cellulose as a Renewable and Biocompatible Nanomaterial for Cancer-Targeting Nanoparticles

  • Open Access

    ARTICLE

    Comparison of Combustion Characteristics of Tars Produced with Tobacco Stem Biomass Gasification

    Bo Chen1, Mingjun Wang2, Bo Liu3,*, Chunping Lu4, Guohai Jia1, Yong Chao5, Chao Zhong1

    Journal of Renewable Materials, Vol.12, No.1, pp. 119-129, 2024, DOI:10.32604/jrm.2023.031521

    Abstract In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas, “tobacco stem semi-tar inside furnace”, “tobacco stem tar inside furnace” and “tobacco stem tar out-of-furnace” were subjected to thermogravimetric experiments, and the combustion characteristics and kinetic characteristics were analyzed. The result shows that “tobacco stem semi-tar inside furnace” has the highest value and “tobacco stem tar out-of-furnace” is has the lowest value on ignition characteristics, combustion characteristics and combustible stability; “tobacco stem semi-tar inside furnace” has the lowest value and “tobacco stem tar outside furnace” has the highest value on burnout characteristics; “tobacco… More > Graphic Abstract

    Comparison of Combustion Characteristics of Tars Produced with Tobacco Stem Biomass Gasification

Displaying 21-30 on page 3 of 1132. Per Page