Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (172)
  • Open Access

    ARTICLE

    An Investigation into the Performances of Cement Mortar Incorporating Superabsorbent Polymer Synthesized with Kaolin

    Xiao Huang1,2, Jin Yang3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2024.046360

    Abstract Cement-based materials are fundamental in the construction industry, and enhancing their properties is an ongoing challenge. The use of superabsorbent polymers (SAP) has gained significant attention as a possible way to improve the performance of cement-based materials due to their unique water-absorption and retention properties. This study investigates the multifaceted impact of kaolin intercalation-modified superabsorbent polymers (K-SAP) on the properties of cement mortar. The results show that K-SAP significantly affects the cement mortar’s rheological behavior, with distinct phases of water absorption and release, leading to changes in workability over time. Furthermore, K-SAP alters the hydration kinetics, delaying the exothermic peak… More >

  • Open Access

    ARTICLE

    Study of a Hydraulic Jump in an Asymmetric Trapezoidal Channel with Different Sluice Gates

    Bouthaina Debabeche1,2,*, Sonia Cherhabil3

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2024.047403

    Abstract In this study, the main properties of the hydraulic jump in an asymmetric trapezoidal flume are analyzed experimentally, including the so-called sequent depths, characteristic lengths, and efficiency. In particular, an asymmetric trapezoidal flume with a length of 7 m and a width of 0.304 m is considered, with the bottom of the flume transversely inclined at an angle of m = 0.296 and vertical lateral sides. The corresponding inflow Froude number is allowed to range in the interval (1.40 < F1 < 6.11). The properties of this jump are compared to those of hydraulic jumps in channels with other types… More >

  • Open Access

    ARTICLE

    Formation of Water Quality of Surface Water Bodies Used in the Material Processing

    Tatyana Lyubimova1,*, Anatoly Lepikhin2, Yanina Parshakova1, Irina Zayakina3, Alibek Issakhov4

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2024.048463

    Abstract In the process of production or processing of materials by various methods, there is a need for a large volume of water of the required quality. Today in many regions of the world, there is an acute problem of providing industry with water of a required quality. Its solution is an urgent and difficult task. The water quality of surface water bodies is formed by a combination of a large number of both natural and anthropogenic factors, and is often significantly heterogeneous not only in the water area, but also in depth. As a rule, the water supply of large… More >

  • Open Access

    ARTICLE

    Linear and Non-Linear Dynamics of Inertial Waves in a Rotating Cylinder with Antiparallel Inclined Ends

    Mariya Shiryaeva1, Mariya Subbotina2, Stanislav Subbotin1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2024.048165

    Abstract This work is devoted to the experimental study of inertial wave regimes in a non-uniform rotating cylinder with antiparallel inclined ends. In this setting, the cross-section of the cylinder is divided into two regions where the fluid depth increases or decreases with radius. Three different regimes are found: inertial wave attractor, global oscillations (the cavity’s resonant modes) and regime of symmetric reflection of wave beams. In linear wave regimes, a steady single vortex elongated along the rotation axis is generated. The location of the wave’s interaction with the sloping ends determines the vortex position and the vorticity sign. In non-linear… More >

  • Open Access

    ARTICLE

    A Gasification Technology to Combine Oil Sludge with Coal–Water Slurry: CFD Analysis and Performance Determination

    Xulei Wu1, Hailong Yu1,*, Panrong Wu1, Chaoqian Wang1, Haiqun Chen1, Yunlan Sun1, He Zheng2

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2024.047092

    Abstract The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic. In this context, gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry (CWS) and generate resourceful fuel. In this study, a novel five-nozzle gasifier reactor was analyzed by means of a CFD (Computational fluid dynamic) method. Among several influential factors, special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge, which are known to have a significant impact on the flow field, temperature distribution and gasifier performances.… More >

  • Open Access

    ARTICLE

    An Experimental Analysis of Gas-Liquid Flow Breakdown in a T-Junction

    Lihui Ma1,*, Zhuo Han1, Wei Li1, Guangfeng Qi1, Ran Cheng2, Yuanyuan Wang1, Xiangran Mi3, Xiaohan Zhang1, Yunfei Li1

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2024.046405

    Abstract When a gas-liquid two-phase flow (GLTPF) enters a parallel separator through a T-junction, it generally splits unevenly. This phenomenon can seriously affect the operation efficiency and safety of the equipment located downstream. In order to investigate these aspects and, more specifically, the so-called bias phenomenon (all gas and liquid flowing to one pipe, while the other pipe is a liquid column that fluctuates up and down), laboratory experiments were carried out by using a T-junction connected to two parallel vertical pipes. Moreover, a GLTPF prediction model based on the principle of minimum potential energy was introduced. The research results indicate… More >

  • Open Access

    ARTICLE

    Effects of Different Concentrations of Sulfate Ions on Carbonate Crude Oil Desorption: Experimental Analysis and Molecular Simulation

    Nannan Liu*, Hengchen Qi, Hui Xu, Yanfeng He

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2024.048354

    Abstract

    Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks. Nevertheless, the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown. This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water. The problem is addressed in the framework of molecular dynamics simulation (Material Studio software) and experiments. The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture. The final contact… More >

  • Open Access

    ARTICLE

    Numerical Analysis of Permeability of Functionally Graded Scaffolds

    Dmitry Bratsun*, Natalia Elenskaya, Ramil Siraev, Mikhail Tashkinov

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2024.047928

    Abstract In this work, we numerically study the hydrodynamic permeability of new-generation artificial porous materials used as scaffolds for cell growth in a perfusion bioreactor. We consider two popular solid matrix designs based on triply periodic minimal surfaces, the Schwarz P (primitive) and D (diamond) surfaces, which enable the creation of materials with controlled porosity gradients. The latter property is crucial for regulating the shear stress field in the pores of the scaffold, which makes it possible to control the intensity of cell growth. The permeability of functionally graded materials is studied within the framework of both a microscopic approach based… More > Graphic Abstract

    Numerical Analysis of Permeability of Functionally Graded Scaffolds

  • Open Access

    ARTICLE

    Impact of Osmotic Pressure on Seepage in Shale Oil Reservoirs

    Lijun Mu, Xiaojia Xue, Jie Bai*, Xiaoyan Li, Xueliang Han

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2024.049013

    Abstract Following large-scale volume fracturing in shale oil reservoirs, well shut-in measures are generally employed. Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the shut-in phase in augmenting shale oil productivity. Unlike conventional reservoirs, shale oil reservoirs exhibit characteristics such as low porosity, low permeability, and rich content of organic matter and clay minerals. Notably, the osmotic pressure effects occurring between high-salinity formation water and low-salinity fracturing fluids are significant. The current understanding of the mobilization patterns of crude oil in micro-pores during the imbibition process remains nebulous, and the mechanisms underpinning osmotic pressure effects… More >

  • Open Access

    ARTICLE

    Averaged Dynamics of Fluids near the Oscillating Interface in a Hele-Shaw Cell

    Anastasia Bushueva, Olga Vlasova, Denis Polezhaev*

    FDMP-Fluid Dynamics & Materials Processing, Vol., , DOI:10.32604/fdmp.2024.048271

    Abstract The steady flow in a Hele-Shaw cell filled with fluids with a high viscosity contrast in the presence of fluid oscillations is experimentally studied. The control of oscillatory dynamics of multiphase systems with interfaces is a challenging technological problem. We consider miscible (water and glycerol) and immiscible (water and high-viscosity silicone oil PMS-1000) fluids under subsonic oscillations perpendicular to the interface. Observations show that the interface shape depends on the amplitude and frequency of oscillations. The interface is undisturbed only in the absence of oscillations. Under small amplitudes, the interface between water and glycerol widens due to mixing. When the… More >

Displaying 21-30 on page 3 of 172. Per Page