Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (274)
  • Open Access

    ARTICLE

    Time Series Analysis for Vibration-Based Structural Health Monitoring: A Review

    Kong Fah Tee 1,*

    Structural Durability & Health Monitoring, Vol.12, No.3, pp. 129-147, 2018, DOI: 10.3970/sdhm.2018.04316

    Abstract Structural health monitoring (SHM) is a vast, interdisciplinary research field whose literature spans several decades with focusing on condition assessment of different types of structures including aerospace, mechanical and civil structures. The need for quantitative global damage detection methods that can be applied to complex structures has led to vibration-based inspection. Statistical time series methods for SHM form an important and rapidly evolving category within the broader vibration-based methods. In the literature on the structural damage detection, many time series-based methods have been proposed. When a considered time series model approximates the vibration response of a structure and model coefficients… More >

  • Open Access

    ARTICLE

    A “Three-index” Seismic Performance Evaluation Method Based on Sino-US Seismic Code

    Hui Wang1,*, Shuqi Wan2

    Structural Durability & Health Monitoring, Vol.12, No.3, pp. 149-167, 2018, DOI: 10.3970/sdhm.2018.03928

    Abstract The Code for Seismic Design of Buildings (GB50011-2010) in 2016 and the method of seismic performance-based design for high-rise buildings in the Guide for Performance-based Design of High-Rise Buildings (TBI2017) are compared. In view of the characteristics and limitations of the seismic performance index set by the Sino-US seismic code, a “three-index” performance index system and evaluation process considering the displacement angle of the structural interlayer, the plastic damage degree of components and the plastic strain of material is put forward; combining the example of time-history analysis of a out-of-code high-rise building under the rare earthquakes is verified. The results… More >

  • Open Access

    ARTICLE

    Comparative Study on Diagonal Strut Model of Infill Wall

    Zhenling Chai1, Zixiong Guo1,*, Xiaojuan Liu1, Yunfan Jiang1

    Structural Durability & Health Monitoring, Vol.12, No.3, pp. 169-187, 2018, DOI: 10.3970/sdhm.2018.00240

    Abstract The equivalent diagonal strut models of infill wall mainly include the single strut model and multi-strut model. Firstly, several equivalent strut models and their characteristics are introduced in this paper. Then, model analysis and pushover analysis are carried out on infilled frame models with the aid of the software SAP2000. Two typical single strut models and a typical three-strut model are used to simulate the panel of the frames respectively. It is indicated that the period reduction factor of the frame with a three-strut model is close to the value recommended by the current code. The infill wall has great… More >

  • Open Access

    ARTICLE

    Joint Time-Frequency Analysis of Seismic Signals: A Critical Review

    Roshan Kumar1,*, Wei Zhao1, Vikash Singh2

    Structural Durability & Health Monitoring, Vol.12, No.2, pp. 65-83, 2018, DOI: 10.3970/sdhm.2018.02329

    Abstract This paper presents an evaluation of time-frequency methods for the analysis of seismic signals. Background of the present work is to describe, how the frequency content of the signal is changing in time. The theoretical basis of short time Fourier transform, Gabor transform, wavelet transform, S-transform, Wigner distribution, Wigner-Ville distribution, Pseudo Wigner-Ville distribution, Smoothed Pseudo Wigner-Ville distribution, Choi-William distribution, Born-Jordan Distribution and cone shape distribution are presented. The strengths and weaknesses of each technique are verified by applying them to a particular synthetic seismic signal and recorded real time earthquake data. More >

  • Open Access

    ARTICLE

    Ductility and Ultimate Capacity of Concrete-Filled Lattice Rectangular Steel Tube Columns

    Chengquan Wang1, Yun Zou1,*, Tianqi Li1, Jie Ding1, Xiaoping Feng1, Tiange Lei1

    Structural Durability & Health Monitoring, Vol.12, No.2, pp. 99-110, 2018, DOI: 10.3970/sdhm.2018.02061

    Abstract A kind of concrete-filled lattice rectangular steel tube (CFLRST) column was put forward. The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column. By comparing the load-deformation curves from the test results, the rationality and reliability of the finite element model has been confirmed, moreover, the change of the section stiffness and stress in the forcing process and the ultimate bearing capacity of the column were analyzed. Based on the model, the comparison of ultimate bearing capacity and ductility between CFLRST column and reinforced concrete (RC) column were also analyzed. The results of the finite element analysis… More >

  • Open Access

    ARTICLE

    Use of Discrete Wavelet Features and Support Vector Machine for Fault Diagnosis of Face Milling Tool

    C. K. Madhusudana1, N. Gangadhar1, Hemantha Kumar, Kumar,*,1, S. Narendranath1

    Structural Durability & Health Monitoring, Vol.12, No.2, pp. 111-127, 2018, DOI: 10.3970/sdhm.2018.01262

    Abstract This paper presents the fault diagnosis of face milling tool based on machine learning approach. While machining, spindle vibration signals in feed direction under healthy and faulty conditions of the milling tool are acquired. A set of discrete wavelet features is extracted from the vibration signals using discrete wavelet transform (DWT) technique. The decision tree technique is used to select significant features out of all extracted wavelet features. C-support vector classification (C-SVC) and ν-support vector classification (ν-SVC) models with different kernel functions of support vector machine (SVM) are used to study and classify the tool condition based on selected features.… More >

  • Open Access

    ARTICLE

    Optimization of Casing Design Parameters to Mitigate Casing Failure Caused by Formation Slippage

    Chaoyang Hu1, Chi Ai1,*, Fengjiao Wang1,*

    Structural Durability & Health Monitoring, Vol.12, No.2, pp. 85-98, 2018, DOI: 10.3970/sdhm.2018.00115

    Abstract There has been lack of work efforts on how to optimize cementing and completing parameters in order to prevent casing failure induced by formation slippage in pertroleum industry scope. Once the weak plane fails, the formation will become easily undertaken slippage across a large area along its interface. The plenty of horizontal planes of weakness in reservoir formations, as reported for a number of oilfields, can easily undertaken slippage once it fails. To address the problem, three-dimensional finite element models were established by taking into considerations the elastoplastic mechanical characteristics of both the casing and the near-wellbore rock. Two types… More >

  • Open Access

    ARTICLE

    Durability of Reinforced Concrete Structures under Coupling Action of Load and Chlorine Erosion

    Yang Li1,*, Dongwei Yang1, Jiangkun Zhang1

    Structural Durability & Health Monitoring, Vol.12, No.1, pp. 51-63, 2018, DOI:10.3970/sdhm.2018.012.051

    Abstract Diffusion behavior of chloride ion in reinforced concrete under bending moment was studied by taking the ratio of bending moment to ultimate flexural capacity as load level indicator. The function relationship between load level and chloride ion diffusion coefficient was established, based on that the limit state equation of the chloride ion critical concentration and chloride ion concentration on surface of the steel bar was established. Then by applying Monte-Carlo method the corrosion probability of reinforcement under different load levels in splash zone was calculated. Calculation results demonstrated that compared with the durability reliability index considering loading effect, the reliability… More >

  • Open Access

    ARTICLE

    Information Monitoring Technology for Support Structure of Railway Tunnel During Operation

    Licai Zhao1,*, Shishuenn Chen

    Structural Durability & Health Monitoring, Vol.12, No.1, pp. 35-50, 2018, DOI:10.3970/sdhm.2018.012.035

    Abstract In the process of railway construction, because of the inconvenience of geological condition, water bursting and mud surging happen frequently, and the later deformation of support structure on the happening geology section would threaten the normal running of railway. The limit difference of deformation control value of the support structure section where geological accidents frequently happen, is small, and artificial half-automatic supervisory technology cannot get the health condition of tunnel in time, resulting many cars speed-down accidents due to deformation of support structure. Through design innovation, we introduce TGMIS in the later period of Yanzishan railway construction to quickly capture… More >

  • Open Access

    ARTICLE

    Instability Analysis of Strike-Slip Fault Based on Cusp Catastrophe Model

    Zaitie Chen1,*, Wei Wang2, Dayang Li3

    Structural Durability & Health Monitoring, Vol.12, No.1, pp. 19-33, 2018, DOI:10.3970/sdhm.2018.012.019

    Abstract The distribution of many active faults in western China is an important reason for the frequent earthquakes. With the rapid development of the western region, many major projects have been built there and the existence of active faults is bound to have an influence on the safety of the engineering structure. Therefore, it is of great significance to study the mechanism of fault slip instability for evaluating the geological stability of the region and for the site selection of major projects. In this paper, cusp catastrophe theory is used to establish a cusp catastrophe model with general softened form of… More >

Displaying 261-270 on page 27 of 274. Per Page  

Share Link

WeChat scan