Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (283)
  • Open Access


    Influence of Surface Treatements on Fatigue Life of a Free Piston Linear Generator Engine Components Using Narrow Band Approach

    M. M. Rahman1, A.K. Ariffin, N. Jamaludin, C. H. C. Haron

    Structural Durability & Health Monitoring, Vol.2, No.2, pp. 69-82, 2006, DOI:10.3970/sdhm.2006.002.069

    Abstract This paper describes finite element based vibration fatigue analysis techniques to predict fatigue life using the narrow band frequency response approach. The life prediction results are useful for improving the component design at a very early development stage. The approach is found to be suitable for periodic loading but requires very large time records to accurately describe random loading processes. The focus of this paper is to investigate the effects of surface treatments on the fatigue life of the components of free piston linear engine. The finite element modeling and frequency response analysis have been performed using a computer-aided design… More >

  • Open Access


    Building Risk Assessment Procedures

    A. Soprano1, F. Caputo1

    Structural Durability & Health Monitoring, Vol.2, No.1, pp. 51-68, 2006, DOI:10.3970/sdhm.2006.002.051

    Abstract This work describes the results of the experience acquired by the authors during their participation to some among the European research programs with the aim to develop a probabilistic risk assessment procedure to analyse the spreading of fatigue-induced damage in typical aeronautical components. The several steps of the procedure are pointed out, and especially the modelling of the damage evolutionary process; the initiation and the transitional probabilities, which characterize the passage from one damage level to a higher one, are fully characterized and their dependence from time and from the damage state of surrounding zones illustrated by various example results. More >

  • Open Access


    Failure Load of Frp Strengthened Masonry Walls: Experimental Results and Numerical Models

    G. Milani1, T. Rotunno2, E. Sacco3, A. Tralli1,4

    Structural Durability & Health Monitoring, Vol.2, No.1, pp. 29-50, 2006, DOI:10.3970/sdhm.2006.002.029

    Abstract Aim of the present work is the evaluation of the ultimate load bearing capacity of masonry panels reinforced with FRP strips. The investigation is developed performing both experimental and numerical studies. In particular, several panels subjected to different loading conditions are tested in the Tests Laboratory of the University of Florence (Italy). Then, numerical models based on combined homogenization and limit analysis techniques are proposed. The results obtained by numerical simulations are compared with experimental data. The good agreement obtained shows that the proposed numerical model can be applied for the evaluation of the ultimate load bearing capacity of reinforced… More >

  • Open Access


    Experimental Analysis on Durability of Brick-Masonry Panels Subjected to Cyclic Loads

    R.S. Olivito1, F.A. Zuccarello1

    Structural Durability & Health Monitoring, Vol.2, No.1, pp. 19-28, 2006, DOI:10.3970/sdhm.2006.002.019

    Abstract During the last decades FRP materials have been utilized in many civil engineering applications for their good performances in substituting traditional restoration techniques, especially in reinforcing and restoring damaged structures. At present, the use of composite materials is greatly increasing as a consequence of the fact that conservation and restoration of existing historic heritage are becoming key issues for civil engineers and architects. This paper deals with the behavior of brick masonry models subjected to cyclic loads with the aim of studying their performances and durability. Firstly the models were damaged by imposing a strain history until they reached a… More >

  • Open Access


    The Numerical Analysis of Reinforced Concrete Beams Using Embedded Discontinuities

    R. Costa1, J. Alfaiate2

    Structural Durability & Health Monitoring, Vol.2, No.1, pp. 11-18, 2006, DOI:10.3970/sdhm.2006.002.011

    Abstract In this paper a numerical simulation is performed on the behaviour of reinforced concrete beams, submitted to initial damage, subsequently strengthened with external steel plates bonded with epoxy. Modelling these structures requires the characterization of the behaviour of different materials as well as the connection between them. Fracture is modelled within the scope of a discrete crack approach, using a formulation in which strong discontinuities are embedded in the finite elements. In this approach, the displacement field is truly discontinuous and the jumps are non-homogeneous within each parent element [Alfaiate, Wells and Sluys (2000)]. More >

  • Open Access


    The Theory of Critical Distances: a History and a New Definition


    Structural Durability & Health Monitoring, Vol.2, No.1, pp. 1-10, 2006, DOI:10.3970/sdhm.2006.002.001

    Abstract Current theories of fracture recognize the importance of material length scales, i.e. parameters having the dimensions of length which are included, either explicitly or implicitly, in many methods of fracture prediction. This paper is a review of the development of one particular approach, which we have called the Theory of Critical Distances (TCD). The history of this approach -- which is presented here for the first time - is a story of parallel developments in the areas of fatigue and brittle fracture and in different material fields: metals, polymers, ceramics and composites. A particular milestone in the development of the… More >

  • Open Access


    A Frequency Method for Fatigue Life Estimation of Mechanical Components under Bimodal Random Stress Process

    C. Braccesi1, F. Cianetti1, G. Lori1, D. Pioli1

    Structural Durability & Health Monitoring, Vol.1, No.4, pp. 277-290, 2005, DOI:10.3970/sdhm.2005.001.277

    Abstract This paper describes an original frequency method for fatigue life estimation of mechanical components subjected to random inputs. Currently mechanical components life design under random loads is an important task of the research, due to the increasing importance of virtual simulation in opposition to the experimental tests. The frequency domain approach, in this context, seems to be able to supply reliable estimations with small computational effort. The proposed method belongs to the class of corrective coefficient to narrow-band formula methods and it has been thought for bimodal PSDs. The definition of the generalized bimodal processes and the research of the… More >

  • Open Access


    Fatigue Resistance of Thin Hard Coated Spur Gears

    S. Baragetti1, A. Terranova2

    Structural Durability & Health Monitoring, Vol.1, No.4, pp. 267-276, 2005, DOI:10.3970/sdhm.2005.001.267

    Abstract Aim of this work is to investigate into the possibility of enhancing the fatigue resistance of CrN PVD coated components. In particular PVD coated spur gears were tested and numerical simulation of crack propagation was carried out. The coating layer micro-hardness and the residual stresses characterising the surface film were measured and the obtained results were introduced in a numerical modelling predicting fatigue life procedure of coated gears used in gearboxes for automotive applications. The number of cycles necessary to reach specified crack depths of coated and uncoated samples was numerically determined and represents a powerful tool to predict fatigue… More >

  • Open Access


    Fatigue Crack Growth Behaviour of Nitrided and Shot Peened Specimens

    C. Colombo1, M. Guagliano1,2, L. Vergani1

    Structural Durability & Health Monitoring, Vol.1, No.4, pp. 253-266, 2005, DOI:10.3970/sdhm.2005.001.253

    Abstract In this paper the fatigue crack growth properties of a nitrided and shot-peened steel is dealt with: different peening intensities were considered and the resulting residual stresses measured by means of an X-ray diffractometer. Rotating bending fatigue tests were executed on specimens including a blind micro hole, acting as a pre-existent crack. The fracture surface of broken specimens was observed with a SEM to detect the crack growth initiation point. The run-out specimens were broken after the test and the presence of non-propagating cracks detected. The results allowed to determine the propagation threshold of the nitrided and shot peened material. More >

  • Open Access


    Fatigue Resistance of AA2024-T4 Friction Stir welding Joints: Influence of Process Parameters

    L. Fratini1, S. Pasta2

    Structural Durability & Health Monitoring, Vol.1, No.4, pp. 245-252, 2005, DOI:10.3970/sdhm.2005.001.245

    Abstract In the last years friction stir welding (FSW) has reached a quite large diffusion in the welding of aluminium alloys, difficult to be welded with traditional technologies. The objective of this investigation was to investigate the influence of FSW process parameters on the fatigue strength of the developed joints. Moreover, in order to improvement the strength of joint, the effect of a post-welding treatment has been highlighted; what is more a surface finish treatment has been developed with the aim to eliminate the stress concentration caused by welding process on the surface of the joints. Finally, the fracture locations have… More >

Displaying 221-230 on page 23 of 283. Per Page  

Share Link