Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (315)
  • Open Access

    ARTICLE

    Fault Diagnosis Method of Rolling Bearing Based on ESGMD-CC and AFSA-ELM

    Jiajie He1,2, Fuzheng Liu3, Xiangyi Geng3, Xifeng Liang1, Faye Zhang3,*, Mingshun Jiang3

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 37-54, 2024, DOI:10.32604/sdhm.2023.029428

    Abstract Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods, making it challenging to ensure the fault diagnosis accuracy and reliability. A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator (ESGMD-CC) and artificial fish swarm algorithm (AFSA) optimized extreme learning machine (ELM) is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis. Firstly, SGMD decomposes the raw vibration signal into multiple Symplectic geometry components (SGCs). Secondly, the iterations are reset by the… More >

  • Open Access

    ARTICLE

    Low-Strain Damage Imaging Detection Experiment for Model Pile Integrity Based on HHT

    Ziyang Jiang1, Ziping Wang1,*, Kan Feng1, Yang Zhang2, Rahim Gorgin1

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 557-569, 2023, DOI:10.32604/sdhm.2023.042393

    Abstract With the advancement of computer and mathematical techniques, significant progress has been made in the 3D modeling of foundation piles. Existing methods include the 3D semi-analytical model for non-destructive low-strain integrity assessment of large-diameter thin-walled pipe piles and the 3D soil-pile dynamic interaction model. However, these methods have complex analysis procedures and substantial limitations. This paper introduces an innovative and streamlined 3D imaging technique tailored for the detection of pile damage. The approach harnesses the power of an eight-channel ring array transducer to capture internal reflection signals within foundation piles. The acquired signals are subsequently processed using the Hilbert-Huang Transform… More >

  • Open Access

    ARTICLE

    An Analysis of the Dynamic Behavior of Damaged Reinforced Concrete Bridges under Moving Vehicle Loads by Using the Moving Mesh Technique

    Fabrizio Greco*, Paolo Lonetti, Arturo Pascuzzo, Giulia Sansone

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 457-483, 2023, DOI:10.32604/sdhm.2023.030075

    Abstract This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete (RC) bridge structures commonly adopted in highway and railway networks. An effective three-dimensional FE-based numerical model is developed to analyze the bridge’s structural response under several damage scenarios, including the effects of moving vehicle loads. In particular, the longitudinal and transversal beams are modeled through solid finite elements, while horizontal slabs are made of shell elements. Damage phenomena are also incorporated in the numerical model according to a smeared approach consistent with Continuum Damage Mechanics (CDM). In such a context, the proposed… More >

  • Open Access

    ARTICLE

    Paradigm of Numerical Simulation of Spatial Wind Field for Disaster Prevention of Transmission Tower Lines

    Yongxin Liu1, Puyu Zhao2, Jianxin Xu2, Xiaokai Meng1, Hong Yang1, Bo He2,*

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 521-539, 2023, DOI:10.32604/sdhm.2023.029850

    Abstract Numerical simulation of the spatial wind field plays a very important role in the study of wind-induced response law of transmission tower structures. A reasonable construction of a numerical simulation method of the wind field is conducive to the study of wind-induced response law under the action of an actual wind field. Currently, many research studies rely on simulating spatial wind fields as Gaussian wind, often overlooking the basic non-Gaussian characteristics. This paper aims to provide a comprehensive overview of the historical development and current state of spatial wind field simulations, along with a detailed introduction to standard simulation methods.… More > Graphic Abstract

    Paradigm of Numerical Simulation of Spatial Wind Field for Disaster Prevention of Transmission Tower Lines

  • Open Access

    ARTICLE

    A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response

    Zhicheng Liu1, Long Zhao1,*, Guanru Wen1, Peng Yuan2, Qiu Jin1

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 541-555, 2023, DOI:10.32604/sdhm.2023.029760

    Abstract The displacement of transmission tower feet can seriously affect the safe operation of the tower, and the accuracy of structural health monitoring methods is limited at the present stage. The application of deep learning method provides new ideas for structural health monitoring of towers, but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning (DL). In this paper, we propose a DT-DL based tower foot displacement monitoring method, which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element method. Then the vibration signal… More > Graphic Abstract

    A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response

  • Open Access

    ARTICLE

    Influence of Vertical Irregularity on the Seismic Behavior of Base Isolated RC Structures with Lead Rubber Bearings under Pulse-Like Earthquakes

    Ali Mahamied1, Amjad A. Yasin1, Yazan Alzubi1,*, Jamal Al Adwan1, Issa Mahamied2

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 501-519, 2023, DOI:10.32604/sdhm.2023.028686

    Abstract Nowadays, an extensive number of studies related to the performance of base isolation systems implemented in regular reinforced concrete structures subjected to various types of earthquakes can be found in the literature. On the other hand, investigations regarding the irregular base-isolated reinforced concrete structures’ performance when subjected to pulse-like earthquakes are very scarce. The severity of pulse-like earthquakes emerges from their ability to destabilize the base-isolated structure by remarkably increasing the displacement demands. Thus, this study is intended to investigate the effects of pulse-like earthquake characteristics on the behavior of low-rise irregular base-isolated reinforced concrete structures. Within the study scope,… More >

  • Open Access

    ARTICLE

    Impact Damage Identification of Aluminum Alloy Reinforced Plate Based on GWO-ELM Algorithm

    Wei Li1,2, Benjian Zou1, Yuxiang Luo2, Ning Yang2, Faye Zhang1,*, Mingshun Jiang1, Lei Jia1

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 485-500, 2023, DOI:10.32604/sdhm.2023.025989

    Abstract As a critical structure of aerospace equipment, aluminum alloy stiffened plate will influence the stability of spacecraft in orbit and the normal operation of the system. In this study, a GWO-ELM algorithm-based impact damage identification method is proposed for aluminum alloy stiffened panels to monitor and evaluate the damage condition of such stiffened panels of spacecraft. Firstly, together with numerical simulation, the experimental simulation to obtain the damage acoustic emission signals of aluminum alloy reinforced panels is performed, to establish the damage data. Subsequently, the amplitude-frequency characteristics of impact damage signals are extracted and put into an extreme learning machine… More >

  • Open Access

    ARTICLE

    Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks

    Tiantian Liang*, Runze Wang, Xuxiu Zhang, Yingdong Wang, Jianxiong Yang

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 433-455, 2023, DOI:10.32604/sdhm.2023.029331

    Abstract In this study, an optimized long short-term memory (LSTM) network is proposed to predict the reliability and remaining useful life (RUL) of rolling bearings based on an improved whale-optimized algorithm (IWOA). The multi-domain features are extracted to construct the feature dataset because the single-domain features are difficult to characterize the performance degeneration of the rolling bearing. To provide covariates for reliability assessment, a kernel principal component analysis is used to reduce the dimensionality of the features. A Weibull distribution proportional hazard model (WPHM) is used for the reliability assessment of rolling bearing, and a beluga whale optimization (BWO) algorithm is… More > Graphic Abstract

    Predicting Reliability and Remaining Useful Life of Rolling Bearings Based on Optimized Neural Networks

  • Open Access

    ARTICLE

    Ensemble 1D DenseNet Damage Identification Method Based on Vibration Acceleration

    Chun Sha1,*, Chaohui Yue2, Wenchen Wang3

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 369-381, 2023, DOI:10.32604/sdhm.2023.027948

    Abstract Convolution neural networks in deep learning can solve the problem of damage identification based on vibration acceleration. By combining multiple 1D DenseNet submodels, a new ensemble learning method is proposed to improve identification accuracy. 1D DenseNet is built using standard 1D CNN and DenseNet basic blocks, and the acceleration data obtained from multiple sampling points is brought into the 1D DenseNet training to generate submodels after offset sampling. When using submodels for damage identification, the voting method ideas in ensemble learning are used to vote on the results of each submodel, and then vote centrally. Finally, the cantilever damage problem… More >

  • Open Access

    ARTICLE

    A Noise Reduction Method for Multiple Signals Combining Computed Order Tracking Based on Chirplet Path Pursuit and Distributed Compressed Sensing

    Guangfei Jia*, Fengwei Guo, Zhe Wu, Suxiao Cui, Jiajun Yang

    Structural Durability & Health Monitoring, Vol.17, No.5, pp. 383-405, 2023, DOI:10.32604/sdhm.2023.026885

    Abstract With the development of multi-signal monitoring technology, the research on multiple signal analysis and processing has become a hot subject. Mechanical equipment often works under variable working conditions, and the acquired vibration signals are often non-stationary and nonlinear, which are difficult to be processed by traditional analysis methods. In order to solve the noise reduction problem of multiple signals under variable speed, a COT-DCS method combining the Computed Order Tracking (COT) based on Chirplet Path Pursuit (CPP) and Distributed Compressed Sensing (DCS) is proposed. Firstly, the instantaneous frequency (IF) is extracted by CPP, and the speed is obtained by fitting.… More > Graphic Abstract

    A Noise Reduction Method for Multiple Signals Combining Computed Order Tracking Based on Chirplet Path Pursuit and Distributed Compressed Sensing

Displaying 11-20 on page 2 of 315. Per Page