Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (520)
  • Open Access

    ARTICLE

    Two-Stage Optimal Scheduling of Community Integrated Energy System

    Ming Li1,*, Rifucairen Fu1, Tuerhong Yaxiaer1, Yunping Zheng1, Abiao Huang2, Ronghui Liu2, Shunfu Lin2

    Energy Engineering, Vol.121, No.2, pp. 405-424, 2024, DOI:10.32604/ee.2023.044509

    Abstract From the perspective of a community energy operator, a two-stage optimal scheduling model of a community integrated energy system is proposed by integrating information on controllable loads. The day-ahead scheduling analyzes whether various controllable loads participate in the optimization and investigates the impact of their responses on the operating economy of the community integrated energy system (IES) before and after; the intra-day scheduling proposes a two-stage rolling optimization model based on the day-ahead scheduling scheme, taking into account the fluctuation of wind turbine output and load within a short period of time and according to the different response rates of… More >

  • Open Access

    ARTICLE

    Low-Carbon Dispatch of an Integrated Energy System Considering Confidence Intervals for Renewable Energy Generation

    Yan Shi1, Wenjie Li1, Gongbo Fan2,*, Luxi Zhang1, Fengjiu Yang1

    Energy Engineering, Vol.121, No.2, pp. 461-482, 2024, DOI:10.32604/ee.2023.043835

    Abstract Addressing the insufficiency in down-regulation leeway within integrated energy systems stemming from the erratic and volatile nature of wind and solar renewable energy generation, this study focuses on formulating a coordinated strategy involving the carbon capture unit of the integrated energy system and the resources on the load storage side. A scheduling model is devised that takes into account the confidence interval associated with renewable energy generation, with the overarching goal of optimizing the system for low-carbon operation. To begin with, an in-depth analysis is conducted on the temporal energy-shifting attributes and the low-carbon modulation mechanisms exhibited by the source-side… More >

  • Open Access

    ARTICLE

    Hydrogen Permeation Characteristics of Pd-Cu Membrane in Plasma Membrane Reactor

    Muhd Hadi Iskandar Abd Razak*, Motoki Tsuda, Yukio Hayakawa, Shinji Kambara

    Energy Engineering, Vol.121, No.2, pp. 259-272, 2024, DOI:10.32604/ee.2023.043615

    Abstract Hydrogen is an alternative energy source that has the potential to replace fossil fuels. One of the hydrogen applications is as a material for Polymer Electrolyte Membrane Fuel Cells (PEMFC) in fuel cell vehicles. High-purity hydrogen can be obtained using a hydrogen separation membrane to prevent unwanted contaminants from potentially harming the PEMFC components. In this study, we fabricated a plasma membrane reactor and investigated the permeation performance of a hydrogen separation membrane in a plasma membrane reactor utilizing atmospheric pressure plasma. The result showed the hydrogen permeation rate increasing with time as reactor temperature is increased through joule heating.… More >

  • Open Access

    ARTICLE

    An Adaptive Control Strategy for Energy Storage Interface Converter Based on Analogous Virtual Synchronous Generator

    Feng Zhao, Jinshuo Zhang*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.2, pp. 339-358, 2024, DOI:10.32604/ee.2023.043082

    Abstract In the DC microgrid, the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power. To address this issue, the application of a virtual synchronous generator (VSG) in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator (AVSG) control strategy for the interface DC/DC converter of the battery in the microgrid. Besides, a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control. Firstly, a… More >

  • Open Access

    ARTICLE

    Optimal Location and Sizing of Multi-Resource Distributed Generator Based on Multi-Objective Artificial Bee Colony Algorithm

    Qiangfei Cao1, Huilai Wang2, Zijia Hui1, Lingyun Chen2,*

    Energy Engineering, Vol.121, No.2, pp. 499-521, 2024, DOI:10.32604/ee.2023.042702

    Abstract Distribution generation (DG) technology based on a variety of renewable energy technologies has developed rapidly. A large number of multi-type DG are connected to the distribution network (DN), resulting in a decline in the stability of DN operation. It is urgent to find a method that can effectively connect multi-energy DG to DN. photovoltaic (PV), wind power generation (WPG), fuel cell (FC), and micro gas turbine (MGT) are considered in this paper. A multi-objective optimization model was established based on the life cycle cost (LCC) of DG, voltage quality, voltage fluctuation, system network loss, power deviation of the tie-line, DG… More >

  • Open Access

    ARTICLE

    Nonlinear Flap-Wise Vibration Characteristics of Wind Turbine Blades Based on Multi-Scale Analysis Method

    Qifa Lang, Yuqiao Zheng*, Tiancai Cui, Chenglong Shi, Heyu Zhang

    Energy Engineering, Vol.121, No.2, pp. 483-498, 2024, DOI:10.32604/ee.2023.042437

    Abstract This work presents a novel approach to achieve nonlinear vibration response based on the Hamilton principle. We chose the 5-MW reference wind turbine which was established by the National Renewable Energy Laboratory (NREL), to research the effects of the nonlinear flap-wise vibration characteristics. The turbine wheel is simplified by treating the blade of a wind turbine as an Euler-Bernoulli beam, and the nonlinear flap-wise vibration characteristics of the wind turbine blades are discussed based on the simplification first. Then, the blade’s large-deflection flap-wise vibration governing equation is established by considering the nonlinear term involving the centrifugal force. Lastly, it is… More >

  • Open Access

    ARTICLE

    Distribution Line Longitudinal Protection Method Based on Virtual Measurement Current Restraint

    Wei Wang1, Yang Yu1, Simin Luo2,*, Wenlin Liu2, Wei Tang1, Yuanbo Ye1

    Energy Engineering, Vol.121, No.2, pp. 315-337, 2024, DOI:10.32604/ee.2023.042082

    Abstract As an effective approach to achieve the “dual-carbon” goal, the grid-connected capacity of renewable energy increases constantly. Photovoltaics are the most widely used renewable energy sources and have been applied on various occasions. However, the inherent randomness, intermittency, and weak support of grid-connected equipment not only cause changes in the original flow characteristics of the grid but also result in complex fault characteristics. Traditional overcurrent and differential protection methods cannot respond accurately due to the effects of unknown renewable energy sources. Therefore, a longitudinal protection method based on virtual measurement of current restraint is proposed in this paper. The positive… More >

  • Open Access

    ARTICLE

    Flexible Load Participation in Peaking Shaving and Valley Filling Based on Dynamic Price Incentives

    Lifeng Wang1, Jing Yu2,*, Wenlu Ji1

    Energy Engineering, Vol.121, No.2, pp. 523-540, 2024, DOI:10.32604/ee.2023.041881

    Abstract Considering the widening of the peak-valley difference in the power grid and the difficulty of the existing fixed time-of-use electricity price mechanism in meeting the energy demand of heterogeneous users at various moments or motivating users, the design of a reasonable dynamic pricing mechanism to actively engage users in demand response becomes imperative for power grid companies. For this purpose, a power grid-flexible load bilevel model is constructed based on dynamic pricing, where the leader is the dispatching center and the lower-level flexible load acts as the follower. Initially, an upper-level day-ahead dispatching model for the power grid is established,… More >

  • Open Access

    ARTICLE

    Coordinated Voltage Control of Distribution Network Considering Multiple Types of Electric Vehicles

    Liang Liu, Guangda Xu*, Yuan Zhao, Yi Lu, Yu Li, Jing Gao

    Energy Engineering, Vol.121, No.2, pp. 377-404, 2024, DOI:10.32604/ee.2023.041311

    Abstract The couple between the power network and the transportation network (TN) is deepening gradually with the increasing penetration rate of electric vehicles (EV), which also poses a great challenge to the traditional voltage control scheme. In this paper, we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV. In the first stage, the action of on-load tap changer and capacitor banks, etc., are determined by optimal power flow calculation, and the node electricity price is also determined based on dynamic time-of-use tariff mechanism. In the second stage, multiple operating scenarios of multiple types… More >

  • Open Access

    ARTICLE

    The Short-Term Prediction of Wind Power Based on the Convolutional Graph Attention Deep Neural Network

    Fan Xiao1, Xiong Ping1, Yeyang Li2,*, Yusen Xu2, Yiqun Kang1, Dan Liu1, Nianming Zhang1

    Energy Engineering, Vol.121, No.2, pp. 359-376, 2024, DOI:10.32604/ee.2023.040887

    Abstract The fluctuation of wind power affects the operating safety and power consumption of the electric power grid and restricts the grid connection of wind power on a large scale. Therefore, wind power forecasting plays a key role in improving the safety and economic benefits of the power grid. This paper proposes a wind power predicting method based on a convolutional graph attention deep neural network with multi-wind farm data. Based on the graph attention network and attention mechanism, the method extracts spatial-temporal characteristics from the data of multiple wind farms. Then, combined with a deep neural network, a convolutional graph… More >

Displaying 31-40 on page 4 of 520. Per Page