Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (534)
  • Open Access

    ARTICLE

    HCl-Induced Hg0 Transformation over CuMn2O4 Sorbent

    Aijia Zhang, Yingju Yang, Jing Liu*, Junyan Ding

    Energy Engineering, Vol.119, No.2, pp. 499-510, 2022, DOI:10.32604/ee.2022.015504

    Abstract CuMn2O4 spinel has been regarded as a highly efficient sorbent for Hg0 capture from flue gas. The regenerability and recyclability of CuMn2O4 sorbent are mainly associated with the mercury speciation adsorbed on its surface. However, the effect mechanism of HCl on Hg0 transformation over CuMn2O4 sorbent is still elusive. Experiments were conducted to understand the effect of HCl on Hg0 transformation over CuMn2O4 sorbent. The results indicate that CuMn2O4 sorbent is a mesoporous material and possesses a good thermal stability. CuMn2O4 shows >95% Hg0 removal efficiency in a wide temperature window of 50–350°C. The favorable electron-transfer environment caused by the… More >

  • Open Access

    ARTICLE

    Research on the Impacts of the Inertia and Droop Control Gains from a Variable-Speed Wind Turbine Generator on the Frequency Response

    Dejian Yang1, Yien Xu1, Tong Zhu1, Yang Wang1, Qiuhan Cao1, Yuang Ma1, Enshu Jin2, Xinsong Zhang1,*, Haochen Sun3,*

    Energy Engineering, Vol.119, No.2, pp. 539-554, 2022, DOI:10.32604/ee.2022.015133

    Abstract System frequency must be kept very close to its nominal range to ensure the stability of an electric power grid. Excessive system frequency variations are able to result in load shedding, frequency instability, and even generator damage. With increasing wind power penetration, there is rising concern about the reduction in inertia response and primary frequency control in the electric power grid. Converter-based wind generation is capable of providing inertia response and primary frequency response; nevertheless, the primary frequency and inertia responses of wind generation are different from those of conventional synchronous fleets; it is not completely understood how the primary… More >

  • Open Access

    ARTICLE

    Assessment Framework of Green Intelligent Transformation of Small Hydropower in China

    Jun Shi*

    Energy Engineering, Vol.119, No.2, pp. 681-697, 2022, DOI:10.32604/ee.2022.014942

    Abstract With the comprehensive promoted construction of the establishment of green small hydropower, the defects of existing small hydropower station are gradually emerging, and it is necessary to implement green intelligent transformation to promote the construction of energy internet in China. This study focuses on constructing a green intelligent planning and transforming assessment framework, and assists management department to filtrate the small hydropower stations which can be transformed reasonably. Firstly, power station economy, ecological environment, technical safety management and social benefits are involved in the assessment index system. Secondly, multi-expert judgment aggregation based on fuzzed comparison scale is put forward to… More >

  • Open Access

    ARTICLE

    Pressure-Induced Instability Characteristics of a Transient Flow and Energy Distribution through a Loosely Bent Square Duct

    Sreedham Chandra Adhikari1, Ratan Kumar Chanda1, Sidhartha Bhowmick1, Rabindra Nath Mondal1, Suvash Chandra Saha2,*

    Energy Engineering, Vol.119, No.1, pp. 429-451, 2022, DOI:10.32604/EE.2022.018145

    Abstract Due to widespread applications of the bent ducts in engineering fields such as in chemical, mechanical, bio-mechanical and bio-medical engineering, scientists have paid considerable attention to invent new characteristics of fluid flow in a bent duct (BD). In the ongoing study, a spectral-based numerical technique is applied to explore flow characteristics and energy distribution through a loosely bent square duct (BSD) of small curvature. Flow is accelerated due to combined action of the non-dimensional parameters; the Grashof number Gr (=1000), the curvature (=0.001), and the Prandtl number Pr (=7.0) over a wide domain of the Dean number . Fortran code… More >

  • Open Access

    ARTICLE

    Inferential Statistics and Machine Learning Models for Short-Term Wind Power Forecasting

    Ming Zhang, Hongbo Li, Xing Deng*

    Energy Engineering, Vol.119, No.1, pp. 237-252, 2022, DOI:10.32604/EE.2022.017916

    Abstract The inherent randomness, intermittence and volatility of wind power generation compromise the quality of the wind power system, resulting in uncertainty in the system's optimal scheduling. As a result, it's critical to improve power quality and assure real-time power grid scheduling and grid-connected wind farm operation. Inferred statistics are utilized in this research to infer general features based on the selected information, confirming that there are differences between two forecasting categories: Forecast Category 1 (0–11 h ahead) and Forecast Category 2 (12–23 h ahead). In z-tests, the null hypothesis provides the corresponding quantitative findings. To verify the final performance of… More >

  • Open Access

    ARTICLE

    Effects of Spark Energy on Spark Plug Fault Recognition in a Spark Ignition Engine

    A. A. Azrin1,*, I. M. Yusri1,2, M. H. Mat Yasin3, A. Zainal4

    Energy Engineering, Vol.119, No.1, pp. 189-199, 2022, DOI:10.32604/EE.2022.017843

    Abstract The increasing demands for fuel economy and emission reduction have led to the development of lean/diluted combustion strategies for modern Spark Ignition (SI) engines. The new generation of SI engines requires higher spark energy and a longer discharge duration to improve efficiency and reduce the backpressure. However, the increased spark energy gives negative impacts on the ignition system which results in deterioration of the spark plug. Therefore, a numerical model was used to estimate the spark energy of the ignition system based on the breakdown voltage. The trend of spark energy is then recognized by implementing the classification method. Significant… More >

  • Open Access

    ARTICLE

    A Novel Energy Lifting Approach Using J-Function and Flow Zone Indicator for Oil Fields

    M. N. Tarhuni1,*, W. R. Sulaiman1, M. Z. Jaafar1, K. M. Sabil2

    Energy Engineering, Vol.119, No.1, pp. 253-273, 2022, DOI:10.32604/EE.2022.017820

    Abstract The X field is located in the southwestern part of block NX89 of Kentan Basin in Libya. This field is produced from Hailan multilayer consolidated sandstone with moderate rock property and a relatively low energy supplying. The reserve of subsurface energy sources is declining with years. Therefore, techniques were combined to achieve the energy optimization and increase hydrocarbon recovery. In order to understand the subsurface formation of the reservoir and facilitate oil production, global hydraulic element technique was used to quantify the reservoir rock types. In addition, stratigraphic modified Lorenz plot was used for reservoir layering. Reservoir heterogeneity was identified… More >

  • Open Access

    ARTICLE

    The Effect of a Liquid Cover on the Thermal Performance of a Salinity Gradient Solar Pond: An Experimental Study

    Asaad H. Sayer1, Mohsin E. Al-Dokheily1, Hameed B. Mahood2,*, Haider M. Khadem1, Alasdair N. Campbell3

    Energy Engineering, Vol.119, No.1, pp. 17-34, 2022, DOI:10.32604/EE.2022.017715

    Abstract Salinity Gradient Solar Ponds (SGSPs) offer the potential to capture and store solar energy for use in a range of domestic and industrial activities in regions with high solar insolation. However, the evaporation of water from these ponds is a significant problem that must be overcome for them to be deployed successfully. Thus, two ponds were constructed in the city of Nasiriya, Iraq. The two ponds were cylindrical with a diameter of 1.4 m and a total depth of 1.4 m. The water body in the two ponds was constructed with layer depths of 0.5, 0.75 and 0.1 m for… More >

  • Open Access

    ARTICLE

    Energy-Related Services as a Business: Eco-Transformation Logic to Support the Low-Carbon Transition

    Oleksandr Kovalko1, Tatiana Eutukhova2, Oleksandr Novoseltsev3,*

    Energy Engineering, Vol.119, No.1, pp. 103-121, 2022, DOI:10.32604/EE.2022.017709

    Abstract The transition to low-carbon development has been recognized as one of the most important directions for the transformation of national economies in most countries. Today we can identify two of the most common service-oriented logical models of this transition. These are models of Service-Dominant Logic and Product-Service Systems that are used in this study to create a service-oriented platform for stimulating business development in the field of energy-related (ER) services. The establishment of such a platform is being considered based on the conceptual provisions of the global business ecosystem. Such a platform has been found to be a powerful tool… More >

  • Open Access

    ARTICLE

    Research on the Intelligent Control Strategy of the Fuel Cell Phase-Shifting Full-Bridge Power Electronics DC-DC Converter

    Lei Zhang1, Yinlong Yuan1,*, Yihe Sun2, Yun Cheng1, Dian Wu1, Lei Ren1

    Energy Engineering, Vol.119, No.1, pp. 387-405, 2022, DOI:10.32604/EE.2022.017463

    Abstract With the aggravation of energy problems, the development and utilization of new energy has become the focus of all countries. As an effective new energy, the fuel cell has attracted the attention of scholars. However, due to the particularity of proton exchange membrane fuel cell (PEMFC), the performance of traditional PI controlled phase-shifted full-bridge power electronics DC-DC converter cannot meet the needs of practical application. In order to further improve the dynamic performance of the converter, this paper first introduces several main topologies of the current mainstream front-end DC-DC converter, and analyzes their performance in the fuel cell system. Then,… More >

Displaying 351-360 on page 36 of 534. Per Page