Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (520)
  • Open Access

    ARTICLE

    Electromechanical Transient Modeling Analysis of Large-Scale New Energy Grid Connection

    Shichao Cao*, Yonggang Dong, Xiaoying Liu

    Energy Engineering, Vol.121, No.4, pp. 1109-1125, 2024, DOI:10.32604/ee.2023.043004

    Abstract The synchronous virtual machine uses inverter power to imitate the performance of the conventional synchronous machine. It also has the same inertia, damping, frequency, voltage regulation, and other external performance as the generator. It is the key technology to realize new energy grid connections’ stable and reliable operation. This project studies a dynamic simulation model of an extensive new energy power system based on the virtual synchronous motor. A new energy storage method is proposed. The mathematical energy storage model is established by combining the fixed rotor model of a synchronous virtual machine with the charge-discharge power, state of charge,… More >

  • Open Access

    ARTICLE

    Research on the MPPT of Photovoltaic Power Generation Based on Improved WOA and P&O under Partial Shading Conditions

    Jian Zhong, Lei Zhang*, Ling Qin

    Energy Engineering, Vol.121, No.4, pp. 951-971, 2024, DOI:10.32604/ee.2023.041433

    Abstract Partial shading conditions (PSCs) caused by uneven illumination become one of the most common problems in photovoltaic (PV) systems, which can make the PV power-voltage (P-V) characteristics curve show multi-peaks. Traditional maximum power point tracking (MPPT) methods have shortcomings in tracking to the global maximum power point (GMPP), resulting in a dramatic decrease in output power. In order to solve the above problems, intelligent algorithms are used in MPPT. However, the existing intelligent algorithms have some disadvantages, such as slow convergence speed and large search oscillation. Therefore, an improved whale algorithm (IWOA) combined with the P&O (IWOA-P&O) is proposed for… More >

  • Open Access

    ARTICLE

    Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules

    Yongcan Zhu1,2, Jiawen Wang1, Ye Zhang1,2, Long Zhao1, Botao Jiang1, Xinbo Huang1,*

    Energy Engineering, Vol.121, No.4, pp. 895-911, 2024, DOI:10.32604/ee.2023.041002

    Abstract The accumulation of snow and ice on PV modules can have a detrimental impact on power generation, leading to reduced efficiency for prolonged periods. Thus, it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules. To address this issue, the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images. Furthermore, the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules, allowing for the establishment of a residual ice and… More >

  • Open Access

    ARTICLE

    Combined Optimal Dispatch of Thermal Power Generators and Energy Storage Considering Thermal Power Deep Peak Clipping and Wind Energy Emission Grading Punishment

    Junhui Li1, Xuanzhong Luo1,2, Changxing Ge3, Cuiping Li1,*, Changrong Wang4

    Energy Engineering, Vol.121, No.4, pp. 869-893, 2024, DOI:10.32604/ee.2024.029722

    Abstract Peak load and wind energy emission pressure rise more as wind energy penetration keeps growing, which affects the stabilization of the PS (power system). This paper suggests integrated optimal dispatching of thermal power generators and BESS (battery energy storage system) taking wind energy emission grading punishment and deep peak clipping into consideration. Firstly, in order to minimize wind abandonment, a hierarchical wind abandonment penalty strategy based on fuzzy control is designed and introduced, and the optimal grid-connected power of wind energy is determined as a result of minimizing the peak cutting cost of the system. Secondly, considering BESS and thermal… More > Graphic Abstract

    Combined Optimal Dispatch of Thermal Power Generators and Energy Storage Considering Thermal Power Deep Peak Clipping and Wind Energy Emission Grading Punishment

  • Open Access

    ARTICLE

    Simulation and Analysis of Cascading Faults in Integrated Heat and Electricity Systems Considering Degradation Characteristics

    Hang Cui1, Hongbo Ren1,*, Qiong Wu1,2, Hang Lv1, Qifen Li1,2, Weisheng Zhou3

    Energy Engineering, Vol.121, No.3, pp. 581-601, 2024, DOI:10.32604/ee.2023.047470

    Abstract Cascading faults have been identified as the primary cause of multiple power outages in recent years. With the emergence of integrated energy systems (IES), the conventional approach to analyzing power grid cascading faults is no longer appropriate. A cascading fault analysis method considering multi-energy coupling characteristics is of vital importance. In this study, an innovative analysis method for cascading faults in integrated heat and electricity systems (IHES) is proposed. It considers the degradation characteristics of transmission and energy supply components in the system to address the impact of component aging on cascading faults. Firstly, degradation models for the current carrying… More >

  • Open Access

    ARTICLE

    The Effects of Thickness and Location of PCM on the Building’s Passive Temperature-Control–A Numerical Study

    Zhengrong Shi1,3, Jie Ren1, Tao Zhang1,3,*, Yanming Shen2,*

    Energy Engineering, Vol.121, No.3, pp. 681-702, 2024, DOI:10.32604/ee.2023.045238

    Abstract Building energy consumption and building carbon emissions both account for more than 20% of their total national values in China. Building employing phase change material (PCM) for passive temperature control shows a promising prospect in meeting the comfort demand and reducing energy consumption simultaneously. However, there is a lack of more detailed research on the interaction between the location and thickness of PCM and indoor natural convection, as well as indoor temperature distribution. In this study, the numerical model of a passive temperature-controlled building integrating the developed PCM module is established with the help of ANSYS. In which, the actual… More > Graphic Abstract

    The Effects of Thickness and Location of PCM on the Building’s Passive Temperature-Control–A Numerical Study

  • Open Access

    ARTICLE

    Fault Monitoring Strategy for PV System Based on I-V Feature Library

    Huaxing Zhao1, Yanbo Che1,*, Gang Wen2, Yijing Chen3

    Energy Engineering, Vol.121, No.3, pp. 643-660, 2024, DOI:10.32604/ee.2023.045204

    Abstract Long-term use in challenging natural conditions is possible for photovoltaic modules, which are extremely prone to failure. Failure to diagnose and address faults in Photovoltaic (PV) power systems in a timely manner can cause permanent damage to PV modules and, in more serious cases, fires. Therefore, research into photovoltaic module defect detection techniques is crucial for the growth of the photovoltaic sector as well as for maintaining national economic prosperity and ensuring public safety. Considering the drawbacks of the current real-time and historical data-based methods for monitoring distributed PV systems, this paper proposes a method for monitoring PV systems at… More >

  • Open Access

    ARTICLE

    Optimal Operation Strategy of Electricity-Hydrogen Regional Energy System under Carbon-Electricity Market Trading

    Jingyu Li1,2, Mushui Wang1,2,*, Zhaoyuan Wu1,3, Guizhen Tian1,2, Na Zhang1,2, Guangchen Liu1,2

    Energy Engineering, Vol.121, No.3, pp. 619-641, 2024, DOI:10.32604/ee.2023.044862

    Abstract Given the “double carbon” objective and the drive toward low-carbon power, investigating the integration and interaction within the carbon-electricity market can enhance renewable energy utilization and facilitate energy conservation and emission reduction endeavors. However, further research is necessary to explore operational optimization methods for establishing a regional energy system using Power-to-Hydrogen (P2H) technology, focusing on participating in combined carbon-electricity market transactions. This study introduces an innovative Electro-Hydrogen Regional Energy System (EHRES) in this context. This system integrates renewable energy sources, a P2H system, cogeneration units, and energy storage devices. The core purpose of this integration is to optimize renewable energy… More > Graphic Abstract

    Optimal Operation Strategy of Electricity-Hydrogen Regional Energy System under Carbon-Electricity Market Trading

  • Open Access

    ARTICLE

    Comprehensive Evaluation of Distributed PV Grid-Connected Based on Combined Weighting Weights and TOPSIS-RSR Method

    Yue Yang1, Jiarui Zheng1, Long Cheng1,*, Yongnan Zhu2, Hao Wu2

    Energy Engineering, Vol.121, No.3, pp. 703-728, 2024, DOI:10.32604/ee.2023.044721

    Abstract To effectively quantify the impact of distributed photovoltaic (PV) access on the distribution network, this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution (TOPSIS)—rank sum ratio (RSR) (TOPSIS-RSR) method. Based on the traditional distribution network evaluation system, a comprehensive evaluation system has been constructed. It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection. The analytic hierarchy… More >

  • Open Access

    ARTICLE

    Electric Vehicle Charging Load Optimization Strategy Based on Dynamic Time-of-Use Tariff

    Shuwei Zhong, Yanbo Che*, Shangyuan Zhang

    Energy Engineering, Vol.121, No.3, pp. 603-618, 2024, DOI:10.32604/ee.2023.044667

    Abstract Electric vehicle (EV) is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future. However, a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff. Therefore, this paper proposes a dynamic time-of-use tariff mechanism, which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean (FCM) clustering algorithm, and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period. Based on the proposed… More >

Displaying 11-20 on page 2 of 520. Per Page