Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (333)
  • Open Access

    ARTICLE

    Attribute Reduction of Hybrid Decision Information Systems Based on Fuzzy Conditional Information Entropy

    Xiaoqin Ma1,2, Jun Wang1, Wenchang Yu1, Qinli Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.049147

    Abstract The presence of numerous uncertainties in hybrid decision information systems (HDISs) renders attribute reduction a formidable task. Currently available attribute reduction algorithms, including those based on Pawlak attribute importance, Skowron discernibility matrix, and information entropy, struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values, and attributes with fuzzy boundaries and abnormal values. In order to address the aforementioned issues, this paper delves into the study of attribute reduction within HDISs. First of all, a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring… More >

  • Open Access

    ARTICLE

    L1-Smooth SVM with Distributed Adaptive Proximal Stochastic Gradient Descent with Momentum for Fast Brain Tumor Detection

    Chuandong Qin1,2, Yu Cao1,*, Liqun Meng1

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.049228

    Abstract Brain tumors come in various types, each with distinct characteristics and treatment approaches, making manual detection a time-consuming and potentially ambiguous process. Brain tumor detection is a valuable tool for gaining a deeper understanding of tumors and improving treatment outcomes. Machine learning models have become key players in automating brain tumor detection. Gradient descent methods are the mainstream algorithms for solving machine learning models. In this paper, we propose a novel distributed proximal stochastic gradient descent approach to solve the L1-Smooth Support Vector Machine (SVM) classifier for brain tumor detection. Firstly, the smooth hinge loss is introduced to be used… More >

  • Open Access

    ARTICLE

    The Impact of Network Topologies and Radio Duty Cycle Mechanisms on the RPL Routing Protocol Power Consumption

    Amal Hkiri1,*, Hamzah Faraj2, Omar Ben Bahri2, Mouna Karmani1, Sami Alqurashi2, Mohsen Machhout1

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.049207

    Abstract The Internet of Things (IoT) has witnessed a significant surge in adoption, particularly through the utilization of Wireless Sensor Networks (WSNs), which comprise small internet-connected devices. These deployments span various environments and offer a multitude of benefits. However, the widespread use of battery-powered devices introduces challenges due to their limited hardware resources and communication capabilities. In response to this, the Internet Engineering Task Force (IETF) has developed the IPv6 Routing Protocol for Low-power and Lossy Networks (RPL) to address the unique requirements of such networks. Recognizing the critical role of RPL in maintaining high performance, this paper proposes a novel… More >

  • Open Access

    ARTICLE

    An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism

    Zhijun Guo1, Yun Sun2,*, Ying Wang1, Chaoqi Fu3, Jilong Zhong4,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.048112

    Abstract Due to the time-varying topology and possible disturbances in a conflict environment, it is still challenging to maintain the mission performance of flying Ad hoc networks (FANET), which limits the application of Unmanned Aerial Vehicle (UAV) swarms in harsh environments. This paper proposes an intelligent framework to quickly recover the cooperative coverage mission by aggregating the historical spatio-temporal network with the attention mechanism. The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model. A spatio-temporal node pooling method is proposed to ensure all node location features can be updated after destruction… More >

  • Open Access

    ARTICLE

    A Heuristic Radiomics Feature Selection Method Based on Frequency Iteration and Multi-Supervised Training Mode

    Zhigao Zeng1,2, Aoting Tang1,2, Shengqiu Yi1,2, Xinpan Yuan1,2, Yanhui Zhu1,2,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.047989

    Abstract Radiomics is a non-invasive method for extracting quantitative and higher-dimensional features from medical images for diagnosis. It has received great attention due to its huge application prospects in recent years. We can know that the number of features selected by the existing radiomics feature selection methods is basically about ten. In this paper, a heuristic feature selection method based on frequency iteration and multiple supervised training mode is proposed. Based on the combination between features, it decomposes all features layer by layer to select the optimal features for each layer, then fuses the optimal features to form a local optimal… More >

  • Open Access

    ARTICLE

    A Novel Approach to Breast Tumor Detection: Enhanced Speckle Reduction and Hybrid Classification in Ultrasound Imaging

    K. Umapathi1,*, S. Shobana1, Anand Nayyar2, Judith Justin3, R. Vanithamani3, Miguel Villagómez Galindo4, Mushtaq Ahmad Ansari5, Hitesh Panchal6,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.047961

    Abstract Breast cancer detection heavily relies on medical imaging, particularly ultrasound, for early diagnosis and effective treatment. This research addresses the challenges associated with computer-aided diagnosis (CAD) of breast cancer from ultrasound images. The primary challenge is accurately distinguishing between malignant and benign tumors, complicated by factors such as speckle noise, variable image quality, and the need for precise segmentation and classification. The main objective of the research paper is to develop an advanced methodology for breast ultrasound image classification, focusing on speckle noise reduction, precise segmentation, feature extraction, and machine learning-based classification. A unique approach is introduced that combines Enhanced… More >

  • Open Access

    ARTICLE

    Nonlinear Registration of Brain Magnetic Resonance Images with Cross Constraints of Intensity and Structure

    Han Zhou1,2, Hongtao Xu1,2, Xinyue Chang1,2, Wei Zhang1,2, Heng Dong1,2,*

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.047754

    Abstract Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes. However, these methods often lack constraint information and overlook semantic consistency, limiting their performance. To address these issues, we present a novel approach for medical image registration called the Dual-VoxelMorph, featuring a dual-channel cross-constraint network. This innovative network utilizes both intensity and segmentation images, which share identical semantic information and feature representations. Two encoder-decoder structures calculate deformation fields for intensity and segmentation images, as generated by the dual-channel cross-constraint network. This design facilitates bidirectional communication between grayscale and segmentation information, enabling the… More >

  • Open Access

    ARTICLE

    Faster Region Convolutional Neural Network (FRCNN) Based Facial Emotion Recognition

    J. Sheril Angel1, A. Diana Andrushia1,*, T. Mary Neebha1, Oussama Accouche2, Louai Saker2, N. Anand3

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.047326

    Abstract Facial emotion recognition (FER) has become a focal point of research due to its widespread applications, ranging from human-computer interaction to affective computing. While traditional FER techniques have relied on handcrafted features and classification models trained on image or video datasets, recent strides in artificial intelligence and deep learning (DL) have ushered in more sophisticated approaches. The research aims to develop a FER system using a Faster Region Convolutional Neural Network (FRCNN) and design a specialized FRCNN architecture tailored for facial emotion recognition, leveraging its ability to capture spatial hierarchies within localized regions of facial features. The proposed work enhances… More >

  • Open Access

    ARTICLE

    Hyperspectral Image Based Interpretable Feature Clustering Algorithm

    Yaming Kang1,*, Peishun Ye1, Yuxiu Bai1, Shi Qiu2

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.049360

    Abstract Hyperspectral imagery encompasses spectral and spatial dimensions, reflecting the material properties of objects. Its application proves crucial in search and rescue, concealed target identification, and crop growth analysis. Clustering is an important method of hyperspectral analysis. The vast data volume of hyperspectral imagery, coupled with redundant information, poses significant challenges in swiftly and accurately extracting features for subsequent analysis. The current hyperspectral feature clustering methods, which are mostly studied from space or spectrum, do not have strong interpretability, resulting in poor comprehensibility of the algorithm. So, this research introduces a feature clustering algorithm for hyperspectral imagery from an interpretability perspective.… More >

  • Open Access

    ARTICLE

    Big Data Access Control Mechanism Based on Two-Layer Permission Decision Structure

    Aodi Liu, Na Wang*, Xuehui Du, Dibin Shan, Xiangyu Wu, Wenjuan Wang

    CMC-Computers, Materials & Continua, Vol., , DOI:10.32604/cmc.2024.049011

    Abstract Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access control mechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policy management efficiency and difficulty in accurately describing the access control policy. To overcome these problems, this paper proposes a big data access control mechanism based on a two-layer permission decision structure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes are introduced in the ABAC model as business constraints between entities. The proposed mechanism implements a two-layer permission decision structure composed of the inherent attributes of… More >

Displaying 1-10 on page 1 of 333. Per Page