Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Novel Optimization Approach for Energy-Efficient Multiple Workflow Scheduling in Cloud Environment

    Ambika Aggarwal1, Sunil Kumar2,3, Ashok Bhansali4, Deema Mohammed Alsekait5,*, Diaa Salama AbdElminaam6,7,8

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 953-967, 2024, DOI:10.32604/csse.2024.050406 - 17 July 2024

    Abstract Existing multiple workflow scheduling techniques focus on traditional Quality of Service (QoS) parameters such as cost, deadline, and makespan to find optimal solutions by consuming a large amount of electrical energy. Higher energy consumption decreases system efficiency, increases operational cost, and generates more carbon footprint. These major problems can lead to several problems, such as economic strain, environmental degradation, resource depletion, energy dependence, health impacts, etc. In a cloud computing environment, scheduling multiple workflows is critical in developing a strategy for energy optimization, which is an NP-hard problem. This paper proposes a novel, bi-phase Energy-Efficient… More >

  • Open Access

    ARTICLE

    Weighted-adaptive Inertia Strategy for Multi-objective Scheduling in Multi-clouds

    Mazen Farid1,3,*, Rohaya Latip1,2, Masnida Hussin1, Nor Asilah Wati Abdul Hamid1

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1529-1560, 2022, DOI:10.32604/cmc.2022.021410 - 24 February 2022

    Abstract One of the fundamental problems associated with scheduling workflows on virtual machines in a multi-cloud environment is how to find a near-optimum permutation. The workflow scheduling involves assigning independent computational jobs with conflicting objectives to a set of virtual machines. Most optimization methods for solving non-deterministic polynomial-time hardness (NP-hard) problems deploy multi-objective algorithms. As such, Pareto dominance is one of the most efficient criteria for determining the best solutions within the Pareto front. However, the main drawback of this method is that it requires a reasonably long time to provide an optimum solution. In this… More >

  • Open Access

    ARTICLE

    A Heuristics-Based Cost Model for Scientific Workflow Scheduling in Cloud

    Ehab Nabiel Al-Khanak1,*, Sai Peck Lee2, Saif Ur Rehman Khan3, Navid Behboodian4, Osamah Ibrahim Khalaf5, Alexander Verbraeck6, Hans van Lint1

    CMC-Computers, Materials & Continua, Vol.67, No.3, pp. 3265-3282, 2021, DOI:10.32604/cmc.2021.015409 - 01 March 2021

    Abstract Scientific Workflow Applications (SWFAs) can deliver collaborative tools useful to researchers in executing large and complex scientific processes. Particularly, Scientific Workflow Scheduling (SWFS) accelerates the computational procedures between the available computational resources and the dependent workflow jobs based on the researchers’ requirements. However, cost optimization is one of the SWFS challenges in handling massive and complicated tasks and requires determining an approximate (near-optimal) solution within polynomial computational time. Motivated by this, current work proposes a novel SWFS cost optimization model effective in solving this challenge. The proposed model contains three main stages: (i) scientific workflow… More >

Displaying 1-10 on page 1 of 3. Per Page