Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Word Sense Disambiguation Based Sentiment Classification Using Linear Kernel Learning Scheme

    P. Ramya1,*, B. Karthik2

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2379-2391, 2023, DOI:10.32604/iasc.2023.026291 - 05 January 2023

    Abstract Word Sense Disambiguation has been a trending topic of research in Natural Language Processing and Machine Learning. Mining core features and performing the text classification still exist as a challenging task. Here the features of the context such as neighboring words like adjective provide the evidence for classification using machine learning approach. This paper presented the text document classification that has wide applications in information retrieval, which uses movie review datasets. Here the document indexing based on controlled vocabulary, adjective, word sense disambiguation, generating hierarchical categorization of web pages, spam detection, topic labeling, web search, More >

  • Open Access

    ARTICLE

    Graph-Based Chinese Word Sense Disambiguation with Multi-Knowledge Integration

    Wenpeng Lu1,*, Fanqing Meng2, Shoujin Wang3, Guoqiang Zhang4, Xu Zhang1, Antai Ouyang5, Xiaodong Zhang6

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 197-212, 2019, DOI:10.32604/cmc.2019.06068

    Abstract Word sense disambiguation (WSD) is a fundamental but significant task in natural language processing, which directly affects the performance of upper applications. However, WSD is very challenging due to the problem of knowledge bottleneck, i.e., it is hard to acquire abundant disambiguation knowledge, especially in Chinese. To solve this problem, this paper proposes a graph-based Chinese WSD method with multi-knowledge integration. Particularly, a graph model combining various Chinese and English knowledge resources by word sense mapping is designed. Firstly, the content words in a Chinese ambiguous sentence are extracted and mapped to English words with More >

Displaying 1-10 on page 1 of 2. Per Page