Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    REVIEW

    Survey of Indoor Localization Based on Deep Learning

    Khaldon Azzam Kordi1, Mardeni Roslee1,*, Mohamad Yusoff Alias1, Abdulraqeb Alhammadi2, Athar Waseem3, Anwar Faizd Osman4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3261-3298, 2024, DOI:10.32604/cmc.2024.044890 - 15 May 2024

    Abstract This study comprehensively examines the current state of deep learning (DL) usage in indoor positioning. It emphasizes the significance and efficiency of convolutional neural networks (CNNs) and recurrent neural networks (RNNs). Unlike prior studies focused on single sensor modalities like Wi-Fi or Bluetooth, this research explores the integration of multiple sensor modalities (e.g., Wi-Fi, Bluetooth, Ultra-Wideband, ZigBee) to expand indoor localization methods, particularly in obstructed environments. It addresses the challenge of precise object localization, introducing a novel hybrid DL approach using received signal information (RSI), Received Signal Strength (RSS), and Channel State Information (CSI) data… More >

Displaying 1-10 on page 1 of 1. Per Page