Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (56)
  • Open Access

    PROCEEDINGS

    Challenges and Advances in Spot Joining Processes of Automotive Bodies

    Yongbing Li1,*, Yunwu Ma1, Yujun Xia1, Ming Lou1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012602

    Abstract The implementation of lightweight materials and structures in automotive body manufacturing is a strategic approach to improve fuel efficiency of energy-efficient vehicles and driving range of new energy vehicles. However, high specific strength low-ductility light metals (like 7xxx aluminum, magnesium and cast aluminum), ultra-high strength steels, high-stiffness profile structures and their mixed use poses a big challenge to existing commercial spot joining processes, such as resistance spot welding and self-piercing riveting. In this talk, the challenges which new lightweight materials and structures pose to spot joining process will be presented, the bottleneck of the existing More >

  • Open Access

    PROCEEDINGS

    Study on the Effect of Welding Sequence on Residual Stress in Post Internal-Welding Joint of Bimetal Composite Pipe

    Zhenhua Gao1, Bin Han1,*, Shengyuan Niu1, Liying Li1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-4, 2024, DOI:10.32604/icces.2024.013339

    Abstract With the rapid development of industry and globalization, the demand and strategic importance of oil and natural gas have become increasingly significant, leading to energy extraction in more complex corrosive environments [1, 2]. Bimetallic composite pipes, which offer strength and corrosion resistance, exhibit promising potential. For the welding of bimetallic composite plates, it is optimal to follow the welding sequence of the base layer, transition layer, and inner layer [3, 4]. For the welding of bimetal composite pipes, due to the diameter limit, the inner layer is usually welded first, followed by the transition layer,… More >

  • Open Access

    PROCEEDINGS

    Fatigue Behaviors of Thick Cruciform Joints Made by Q355D Structural Steel Under Different Post-Welding Treatments

    Wei Song1,*, Xiaojian Shi2, Shoupan Wei2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012236

    Abstract Different post-welding treatments, such as TIG-Dressing, blinding, HFMI et.al are often used for steel welded joints in construction machinery manufacturing as an effective and reliable method for fatigue strength improvement. This paper investigates the fatigue performance of thick Q355D cruciform joints in heavy load-carrying steel structures under different treatments. Two TIG-Dressing treatments, blinding and HFMI for the full-penetration welded joints were used for fatigue tests. Experimental tests studied the fatigue strength of cruciform welded joints of Q355D structural steel under different treatments. The geometric parameters and relevant statistical analyses were performed by actual 3D optical More >

  • Open Access

    PROCEEDINGS

    A Coupled Thermo-Mechanical Finite Element Method with Optimized Explicit Time Integration for Welding Distortion and Stress Analysis

    Hui Huang1,*, Yongbing Li1, Shuhui Li1, Ninshu Ma2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.011348

    Abstract The sequentially coupled thermo-mechanical finite element analysis (FEA) with implicit iteration scheme is widely adopted for welding process simulation because the one-way coupling scheme is believed to be more efficient. However, such computational framework faces the bottleneck of scalability in large-scale analysis due to the exponential growth of computational burden with respect to the number of unknowns in a FEA model. In the present study, a fully coupled approach with explicit integration was developed to simulate fusion welding induced temperature, distortion, and residual stresses. A mass scaling and heat capacity inverse scaling technique was proposed More >

  • Open Access

    PROCEEDINGS

    Effect of Energy Coupling Mechanism on Molten Pool Stability During Fiber-Diode Hybrid Laser Welding of 2195 Al-Li Alloy

    Yanqiu Zhao1, Yue Li1, Ruizu Liu1, Jianfeng Wang1, Xiaohong Zhan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012476

    Abstract The violent interaction between the high-energy laser beam and the 2195 Al-Li alloy dramatically disturbs the fluctuation behavior of the molten pool during welding process, which results in the poor forming quality and severe porosity defects. In this paper, an emerging coaxial hybrid heat source consisting of a 1080nm fiber laser and a 915nm diode laser is employed in the welding of 2195 Al-Li alloy in order to obtain the more stable molten pool. The distribution characteristics of the fiber-diode laser beam intensity were researched to reveal the energy coupling mechanism. The is-situ observation experiment More >

  • Open Access

    PROCEEDINGS

    The Influence of Leading Mode on the Stability of Plasma and Molten Pool in the Laser-MIG Hybrid Welding Process of Invar Alloy

    Qiyu Gao1, Xiaohong Zhan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012448

    Abstract Invar alloy is widely used in the field of aeronautical composite die manufacturing because it has a very low coefficient of thermal expansion, which is like that of composite material. The laser-MIG (Metal-Inert Gas) hybrid welding was developed to join 10 mm thick Invar alloy plates using Invar M93 filling wire. High speed camera equipment was used to observe plasma dynamic processes. Three-dimensional finite element models of laser-MIG hybrid welding process were established to solve the flow field of the molten pool by two leading modes. Elaborated on the flow behavior of the molten pool More >

  • Open Access

    PROCEEDINGS

    Heat Generation, Plastic Deformation and Stresses Evolution in Inertia Friction Welding of Ni-Based Superalloy

    Chang-an Li1, Guoliang Qin1,*, Hao Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012370

    Abstract The interactions among thermal history, plastic deformation and stress in inertia friction welding (IFW) under different welding parameters have been widely considered a crucial issue and still not fully understood. A novel 3D fully coupled finite element model based on a plastic friction pair was developed to simulate the IFW process of a Ni-based superalloy and reveal the omnidirectional thermo-mechanical coupling mechanism under different welding conditions. The numerical model successfully simulated the deceleration, deformation processes, and peak torsional moments in IFW and captured the evolution of temperature, plastic deformation, and stress. The simulated results were… More >

  • Open Access

    ARTICLE

    Robust Particle Swarm Optimization Algorithm for Modeling the Effect of Oxides Thermal Properties on AMIG 304L Stainless Steel Welds

    Rachid Djoudjou1,*, Abdeljlil Chihaoui Hedhibi3, Kamel Touileb1, Abousoufiane Ouis1, Sahbi Boubaker2, Hani Said Abdo4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1809-1825, 2024, DOI:10.32604/cmes.2024.053621 - 27 September 2024

    Abstract There are several advantages to the MIG (Metal Inert Gas) process, which explains its increased use in various welding sectors, such as automotive, marine, and construction. A variant of the MIG process, where the same equipment is employed except for the deposition of a thin layer of flux before the welding operation, is the AMIG (Activated Metal Inert Gas) technique. This study focuses on investigating the impact of physical properties of individual metallic oxide fluxes for 304L stainless steel welding joint morphology and to what extent it can help determine a relationship among weld depth… More >

  • Open Access

    ARTICLE

    MD Simulation of Diffusion Behaviors in Collision Welding Processes of Al-Cu, Al-Al, Cu-Cu

    Dingyi Jin1, Guo Wei2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3455-3468, 2024, DOI:10.32604/cmc.2024.048644 - 20 June 2024

    Abstract To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces, this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al, Al-Al and Cu-Cu combinations fabricated through collision welding using molecular dynamic (MD) simulation. The atomic diffusion behaviors are compared between similar metal combinations (Al-Al, Cu-Cu) and dissimilar metal combinations (Al-Cu). By combining the simulation results and classical diffusion theory, the diffusion coefficients for similar and dissimilar metal material combinations under different velocity conditions are obtained. The effects of material combinations and collision velocity on diffusion behaviors More >

  • Open Access

    ARTICLE

    Nonlinear Study on the Mechanical Performance of Built-Up Cold-Formed Steel Concrete-Filled Columns under Compression

    Oulfa Harrat1,*, Yazid Hadidane1, S. M. Anas2,*, Nadhim Hamah Sor3,4, Ahmed Farouk Deifalla5, Paul O. Awoyera6, Nadia Gouider1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3435-3465, 2024, DOI:10.32604/cmes.2023.044950 - 11 March 2024

    Abstract Given their numerous functional and architectural benefits, such as improved bearing capacity and increased resistance to elastic instability modes, cold-formed steel (CFS) built-up sections have become increasingly developed and used in recent years, particularly in the construction industry. This paper presents an analytical and numerical study of assembled CFS two single channel-shaped columns with different slenderness and configurations (back-to-back, face-to-face, and box). These columns were joined by double-row rivets for the back-to-back and box configurations, whereas they were welded together for the face-to-face design. The built-up columns were filled with ordinary concrete of good strength.… More > Graphic Abstract

    Nonlinear Study on the Mechanical Performance of Built-Up Cold-Formed Steel Concrete-Filled Columns under Compression

Displaying 1-10 on page 1 of 56. Per Page