Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    MFCCT: A Robust Spectral-Temporal Fusion Method with DeepConvLSTM for Human Activity Recognition

    Rashid Jahangir1,*, Nazik Alturki2, Muhammad Asif Nauman3, Faiqa Hanif1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071574 - 09 December 2025

    Abstract Human activity recognition (HAR) is a method to predict human activities from sensor signals using machine learning (ML) techniques. HAR systems have several applications in various domains, including medicine, surveillance, behavioral monitoring, and posture analysis. Extraction of suitable information from sensor data is an important part of the HAR process to recognize activities accurately. Several research studies on HAR have utilized Mel frequency cepstral coefficients (MFCCs) because of their effectiveness in capturing the periodic pattern of sensor signals. However, existing MFCC-based approaches often fail to capture sufficient temporal variability, which limits their ability to distinguish… More >

  • Open Access

    ARTICLE

    Secure Malicious Node Detection in Decentralized Healthcare Networks Using Cloud and Edge Computing with Blockchain-Enabled Federated Learning

    Raj Sonani1, Reham Alhejaili2,*, Pushpalika Chatterjee3, Khalid Hamad Alnafisah4, Jehad Ali5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3169-3189, 2025, DOI:10.32604/cmes.2025.070225 - 30 September 2025

    Abstract Healthcare networks are transitioning from manual records to electronic health records, but this shift introduces vulnerabilities such as secure communication issues, privacy concerns, and the presence of malicious nodes. Existing machine and deep learning-based anomalies detection methods often rely on centralized training, leading to reduced accuracy and potential privacy breaches. Therefore, this study proposes a Blockchain-based-Federated Learning architecture for Malicious Node Detection (BFL-MND) model. It trains models locally within healthcare clusters, sharing only model updates instead of patient data, preserving privacy and improving accuracy. Cloud and edge computing enhance the model’s scalability, while blockchain ensures More >

  • Open Access

    ARTICLE

    Enhancing Fall Detection in Alzheimer’s Patients Using Unsupervised Domain Adaptation

    Nadhmi A. Gazem1, Sultan Noman Qasem2,3, Umair Naeem4, Shahid Latif5, Ibtehal Nafea6, Faisal Saeed7, Mujeeb Ur Rehman8,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 407-427, 2025, DOI:10.32604/cmes.2025.066517 - 31 July 2025

    Abstract Falls are a leading cause of injury and morbidity among older adults, especially those with Alzheimer’s disease (AD), who face increased risks due to cognitive decline, gait instability, and impaired spatial awareness. While wearable sensor-based fall detection systems offer promising solutions, their effectiveness is often hindered by domain shifts resulting from variations in sensor placement, sampling frequencies, and discrepancies in dataset distributions. To address these challenges, this paper proposes a novel unsupervised domain adaptation (UDA) framework specifically designed for cross-dataset fall detection in Alzheimer’s disease (AD) patients, utilizing advanced transfer learning to enhance generalizability. The… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Pipeline for Wearable Sensors-Based Human Activity Recognition

    Asaad Algarni1, Iqra Aijaz Abro2, Mohammed Alshehri3, Yahya AlQahtani4, Abdulmonem Alshahrani4, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5879-5896, 2025, DOI:10.32604/cmc.2025.064601 - 30 July 2025

    Abstract Inertial Sensor-based Daily Activity Recognition (IS-DAR) requires adaptable, data-efficient methods for effective multi-sensor use. This study presents an advanced detection system using body-worn sensors to accurately recognize activities. A structured pipeline enhances IS-DAR by applying signal preprocessing, feature extraction and optimization, followed by classification. Before segmentation, a Chebyshev filter removes noise, and Blackman windowing improves signal representation. Discriminative features—Gaussian Mixture Model (GMM) with Mel-Frequency Cepstral Coefficients (MFCC), spectral entropy, quaternion-based features, and Gammatone Cepstral Coefficients (GCC)—are fused to expand the feature space. Unlike existing approaches, the proposed IS-DAR system uniquely integrates diverse handcrafted features using… More >

  • Open Access

    ARTICLE

    Driving Activity Classification Using Deep Residual Networks Based on Smart Glasses Sensors

    Narit Hnoohom1, Sakorn Mekruksavanich2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 139-151, 2023, DOI:10.32604/iasc.2023.033940 - 05 February 2024

    Abstract Accidents are still an issue in an intelligent transportation system, despite developments in self-driving technology (ITS). Drivers who engage in risky behavior account for more than half of all road accidents. As a result, reckless driving behaviour can cause congestion and delays. Computer vision and multimodal sensors have been used to study driving behaviour categorization to lessen this problem. Previous research has also collected and analyzed a wide range of data, including electroencephalography (EEG), electrooculography (EOG), and photographs of the driver’s face. On the other hand, driving a car is a complicated action that requires… More >

  • Open Access

    ARTICLE

    Deep Pyramidal Residual Network for Indoor-Outdoor Activity Recognition Based on Wearable Sensor

    Sakorn Mekruksavanich1, Narit Hnoohom2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2669-2686, 2023, DOI:10.32604/iasc.2023.038549 - 11 September 2023

    Abstract Recognition of human activity is one of the most exciting aspects of time-series classification, with substantial practical and theoretical implications. Recent evidence indicates that activity recognition from wearable sensors is an effective technique for tracking elderly adults and children in indoor and outdoor environments. Consequently, researchers have demonstrated considerable passion for developing cutting-edge deep learning systems capable of exploiting unprocessed sensor data from wearable devices and generating practical decision assistance in many contexts. This study provides a deep learning-based approach for recognizing indoor and outdoor movement utilizing an enhanced deep pyramidal residual model called SenPyramidNet… More >

  • Open Access

    ARTICLE

    Pre-Impact and Impact Fall Detection Based on a Multimodal Sensor Using a Deep Residual Network

    Narit Hnoohom1, Sakorn Mekruksavanich2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3371-3385, 2023, DOI:10.32604/iasc.2023.036551 - 15 March 2023

    Abstract Falls are the contributing factor to both fatal and nonfatal injuries in the elderly. Therefore, pre-impact fall detection, which identifies a fall before the body collides with the floor, would be essential. Recently, researchers have turned their attention from post-impact fall detection to pre-impact fall detection. Pre-impact fall detection solutions typically use either a threshold-based or machine learning-based approach, although the threshold value would be difficult to accurately determine in threshold-based methods. Moreover, while additional features could sometimes assist in categorizing falls and non-falls more precisely, the estimated determination of the significant features would be… More >

  • Open Access

    ARTICLE

    Efficient Gait Analysis Using Deep Learning Techniques

    K. M. Monica, R. Parvathi*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6229-6249, 2023, DOI:10.32604/cmc.2023.032273 - 28 December 2022

    Abstract Human Activity Recognition (HAR) has always been a difficult task to tackle. It is mainly used in security surveillance, human-computer interaction, and health care as an assistive or diagnostic technology in combination with other technologies such as the Internet of Things (IoT). Human Activity Recognition data can be recorded with the help of sensors, images, or smartphones. Recognizing daily routine-based human activities such as walking, standing, sitting, etc., could be a difficult statistical task to classify into categories and hence 2-dimensional Convolutional Neural Network (2D CNN) MODEL, Long Short Term Memory (LSTM) Model, Bidirectional long… More >

  • Open Access

    ARTICLE

    Multi-Headed Deep Learning Models to Detect Abnormality of Alzheimer’s Patients

    S. Meenakshi Ammal*, P. S. Manoharan

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 367-390, 2023, DOI:10.32604/csse.2023.025230 - 01 June 2022

    Abstract Worldwide, many elders are suffering from Alzheimer’s disease (AD). The elders with AD exhibit various abnormalities in their activities, such as sleep disturbances, wandering aimlessly, forgetting activities, etc., which are the strong signs and symptoms of AD progression. Recognizing these symptoms in advance could assist to a quicker diagnosis and treatment and to prevent the progression of Disease to the next stage. The proposed method aims to detect the behavioral abnormalities found in Daily activities of AD patients (ADP) using wearables. In the proposed work, a publicly available dataset collected using wearables is applied. Currently,… More >

  • Open Access

    ARTICLE

    Silk Fibroin-Based Hydrogel for Multifunctional Wearable Sensors

    Yiming Zhao1,2, Hongsheng Zhao3, Zhili Wei4, Jie Yuan1, Jie Jian1, Fankai Kong1, Haojiang Xie1, Xingliang Xiong1,2,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2729-2746, 2022, DOI:10.32604/jrm.2022.019721 - 29 June 2022

    Abstract The flexible wearable sensors with excellent stretchability, high sensitivity and good biocompatibility are signifi- cantly required for continuously physical condition tracking in health management and rehabilitation monitoring. Herein, we present a high-performance wearable sensor. The sensor is prepared with nanocomposite hydrogel by using silk fibroin (SF), polyacrylamide (PAM), polydopamine (PDA) and graphene oxide (GO). It can be used to monitor body motions (including large-scale and small-scale motions) as well as human electrophysiological (ECG) signals with high sensitivity, wide sensing range, and fast response time. Therefore, the proposed sensor is promising in the fields of rehabilitation, More >

Displaying 1-10 on page 1 of 15. Per Page