Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (34)
  • Open Access

    ARTICLE

    Driving Activity Classification Using Deep Residual Networks Based on Smart Glasses Sensors

    Narit Hnoohom1, Sakorn Mekruksavanich2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.38, No.2, pp. 139-151, 2023, DOI:10.32604/iasc.2023.033940

    Abstract Accidents are still an issue in an intelligent transportation system, despite developments in self-driving technology (ITS). Drivers who engage in risky behavior account for more than half of all road accidents. As a result, reckless driving behaviour can cause congestion and delays. Computer vision and multimodal sensors have been used to study driving behaviour categorization to lessen this problem. Previous research has also collected and analyzed a wide range of data, including electroencephalography (EEG), electrooculography (EOG), and photographs of the driver’s face. On the other hand, driving a car is a complicated action that requires a wide range of body… More >

  • Open Access

    ARTICLE

    Intelligence COVID-19 Monitoring Framework Based on Deep Learning and Smart Wearable IoT Sensors

    Fadhil Mukhlif1,*, Norafida Ithnin1, Roobaea Alroobaea2, Sultan Algarni3, Wael Y. Alghamdi2, Ibrahim Hashem4

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 583-599, 2023, DOI:10.32604/cmc.2023.038757

    Abstract The World Health Organization (WHO) refers to the 2019 new coronavirus epidemic as COVID-19, and it has caused an unprecedented global crisis for several nations. Nearly every country around the globe is now very concerned about the effects of the COVID-19 outbreaks, which were previously only experienced by Chinese residents. Most of these nations are now under a partial or complete state of lockdown due to the lack of resources needed to combat the COVID-19 epidemic and the concern about overstretched healthcare systems. Every time the pandemic surprises them by providing new values for various parameters, all the connected research… More >

  • Open Access

    ARTICLE

    Deep Pyramidal Residual Network for Indoor-Outdoor Activity Recognition Based on Wearable Sensor

    Sakorn Mekruksavanich1, Narit Hnoohom2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2669-2686, 2023, DOI:10.32604/iasc.2023.038549

    Abstract Recognition of human activity is one of the most exciting aspects of time-series classification, with substantial practical and theoretical implications. Recent evidence indicates that activity recognition from wearable sensors is an effective technique for tracking elderly adults and children in indoor and outdoor environments. Consequently, researchers have demonstrated considerable passion for developing cutting-edge deep learning systems capable of exploiting unprocessed sensor data from wearable devices and generating practical decision assistance in many contexts. This study provides a deep learning-based approach for recognizing indoor and outdoor movement utilizing an enhanced deep pyramidal residual model called SenPyramidNet and motion information from wearable… More >

  • Open Access

    ARTICLE

    A Double-Compensation-Based Federated Learning Scheme for Data Privacy Protection in a Social IoT Scenario

    Junqi Guo1,2, Qingyun Xiong1,*, Minghui Yang1, Ziyun Zhao1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 827-848, 2023, DOI:10.32604/cmc.2023.036450

    Abstract Nowadays, smart wearable devices are used widely in the Social Internet of Things (IoT), which record human physiological data in real time. To protect the data privacy of smart devices, researchers pay more attention to federated learning. Although the data leakage problem is somewhat solved, a new challenge has emerged. Asynchronous federated learning shortens the convergence time, while it has time delay and data heterogeneity problems. Both of the two problems harm the accuracy. To overcome these issues, we propose an asynchronous federated learning scheme based on double compensation to solve the problem of time delay and data heterogeneity problems.… More >

  • Open Access

    ARTICLE

    Higher Order OAM Mode Generation Using Wearable Antenna for 5G NR Bands

    Shehab Khan Noor1, Arif Mawardi Ismail1, Mohd Najib Mohd Yasin1,*, Mohamed Nasrun Osman1, Thennarasan Sabapathy1, Shakhirul Mat Salleh2, Ping Jack Soh3, Ali Hanafiah Rambe4, Nurulazlina Ramli5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 537-551, 2023, DOI:10.32604/csse.2023.037381

    Abstract This paper presents a flexible and wearable textile array antenna designed to generate Orbital Angular Momentum (OAM) waves with Mode +2 at 3.5 GHz (3.4 to 3.6 GHz) of the sub-6 GHz fifth-generation (5G) New Radio (NR) band. The proposed antenna is based on a uniform circular array of eight microstrip patch antennas on a felt textile substrate. In contrast to previous works involving the use of rigid substrates to generate OAM waves, this work explored the use of flexible substrates to generate OAM waves for the first time. Other than that, the proposed antenna was simulated, analyzed, fabricated, and… More >

  • Open Access

    ARTICLE

    Improved Transient Search Optimization with Machine Learning Based Behavior Recognition on Body Sensor Data

    Baraa Wasfi Salim1, Bzar Khidir Hussan2, Zainab Salih Ageed3, Subhi R. M. Zeebaree4,*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4593-4609, 2023, DOI:10.32604/cmc.2023.037514

    Abstract Recently, human healthcare from body sensor data has gained considerable interest from a wide variety of human-computer communication and pattern analysis research owing to their real-time applications namely smart healthcare systems. Even though there are various forms of utilizing distributed sensors to monitor the behavior of people and vital signs, physical human action recognition (HAR) through body sensors gives useful information about the lifestyle and functionality of an individual. This article concentrates on the design of an Improved Transient Search Optimization with Machine Learning based Behavior Recognition (ITSOML-BR) technique using body sensor data. The presented ITSOML-BR technique collects data from… More >

  • Open Access

    ARTICLE

    Pre-Impact and Impact Fall Detection Based on a Multimodal Sensor Using a Deep Residual Network

    Narit Hnoohom1, Sakorn Mekruksavanich2, Anuchit Jitpattanakul3,4,*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3371-3385, 2023, DOI:10.32604/iasc.2023.036551

    Abstract Falls are the contributing factor to both fatal and nonfatal injuries in the elderly. Therefore, pre-impact fall detection, which identifies a fall before the body collides with the floor, would be essential. Recently, researchers have turned their attention from post-impact fall detection to pre-impact fall detection. Pre-impact fall detection solutions typically use either a threshold-based or machine learning-based approach, although the threshold value would be difficult to accurately determine in threshold-based methods. Moreover, while additional features could sometimes assist in categorizing falls and non-falls more precisely, the estimated determination of the significant features would be too time-intensive, thus using a… More >

  • Open Access

    ARTICLE

    Relative-Position Estimation Based on Loosely Coupled UWB–IMU Fusion for Wearable IoT Devices

    A. S. M. Sharifuzzaman Sagar1, Taein Kim1, Soyoung Park1, Hee Seh Lee2, Hyung Seok Kim1,*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1941-1961, 2023, DOI:10.32604/cmc.2023.035360

    Abstract Relative positioning is one of the important techniques in collaborative robotics, autonomous vehicles, and virtual/augmented reality (VR/AR) applications. Recently, ultra-wideband (UWB) has been utilized to calculate relative position as it does not require a line of sight compared to a camera to calculate the range between two objects with centimeter-level accuracy. However, the single UWB range measurement cannot provide the relative position and attitude of any device in three dimensions (3D) because of lacking bearing information. In this paper, we have proposed a UWB-IMU fusion-based relative position system to provide accurate relative position and attitude between wearable Internet of Things… More >

  • Open Access

    ARTICLE

    Automatic Recognition of Construction Worker Activities Using Deep Learning Approaches and Wearable Inertial Sensors

    Sakorn Mekruksavanich1, Anuchit Jitpattanakul2,*

    Intelligent Automation & Soft Computing, Vol.36, No.2, pp. 2111-2128, 2023, DOI:10.32604/iasc.2023.033542

    Abstract The automated evaluation and analysis of employee behavior in an Industry 4.0-compliant manufacturing firm are vital for the rapid and accurate diagnosis of work performance, particularly during the training of a new worker. Various techniques for identifying and detecting worker performance in industrial applications are based on computer vision techniques. Despite widespread computer vision-based approaches, it is challenging to develop technologies that assist the automated monitoring of worker actions at external working sites where camera deployment is problematic. Through the use of wearable inertial sensors, we propose a deep learning method for automatically recognizing the activities of construction workers. The… More >

  • Open Access

    ARTICLE

    Efficient Gait Analysis Using Deep Learning Techniques

    K. M. Monica, R. Parvathi*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6229-6249, 2023, DOI:10.32604/cmc.2023.032273

    Abstract Human Activity Recognition (HAR) has always been a difficult task to tackle. It is mainly used in security surveillance, human-computer interaction, and health care as an assistive or diagnostic technology in combination with other technologies such as the Internet of Things (IoT). Human Activity Recognition data can be recorded with the help of sensors, images, or smartphones. Recognizing daily routine-based human activities such as walking, standing, sitting, etc., could be a difficult statistical task to classify into categories and hence 2-dimensional Convolutional Neural Network (2D CNN) MODEL, Long Short Term Memory (LSTM) Model, Bidirectional long short-term memory (Bi-LSTM) are used… More >

Displaying 1-10 on page 1 of 34. Per Page