Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Context Patch Fusion with Class Token Enhancement for Weakly Supervised Semantic Segmentation

    Yiyang Fu1, Hui Li2,*, Wangyu Wu3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074467 - 29 January 2026

    Abstract Weakly Supervised Semantic Segmentation (WSSS), which relies only on image-level labels, has attracted significant attention for its cost-effectiveness and scalability. Existing methods mainly enhance inter-class distinctions and employ data augmentation to mitigate semantic ambiguity and reduce spurious activations. However, they often neglect the complex contextual dependencies among image patches, resulting in incomplete local representations and limited segmentation accuracy. To address these issues, we propose the Context Patch Fusion with Class Token Enhancement (CPF-CTE) framework, which exploits contextual relations among patches to enrich feature representations and improve segmentation. At its core, the Contextual-Fusion Bidirectional Long Short-Term More >

  • Open Access

    ARTICLE

    CPEWS: Contextual Prototype-Based End-to-End Weakly Supervised Semantic Segmentation

    Xiaoyan Shao1, Jiaqi Han1,*, Lingling Li1,*, Xuezhuan Zhao1,2,3,4, Jingjing Yan1

    CMC-Computers, Materials & Continua, Vol.83, No.1, pp. 595-617, 2025, DOI:10.32604/cmc.2025.060295 - 26 March 2025

    Abstract The primary challenge in weakly supervised semantic segmentation is effectively leveraging weak annotations while minimizing the performance gap compared to fully supervised methods. End-to-end model designs have gained significant attention for improving training efficiency. Most current algorithms rely on Convolutional Neural Networks (CNNs) for feature extraction. Although CNNs are proficient at capturing local features, they often struggle with global context, leading to incomplete and false Class Activation Mapping (CAM). To address these limitations, this work proposes a Contextual Prototype-Based End-to-End Weakly Supervised Semantic Segmentation (CPEWS) model, which improves feature extraction by utilizing the Vision Transformer… More >

  • Open Access

    ARTICLE

    A Weakly Supervised Semantic Segmentation Method Based on Improved Conformer

    Xueli Shen, Meng Wang*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4631-4647, 2025, DOI:10.32604/cmc.2025.059149 - 06 March 2025

    Abstract In the field of Weakly Supervised Semantic Segmentation (WSSS), methods based on image-level annotation face challenges in accurately capturing objects of varying sizes, lacking sensitivity to image details, and having high computational costs. To address these issues, we improve the dual-branch architecture of the Conformer as the fundamental network for generating class activation graphs, proposing a multi-scale efficient weakly-supervised semantic segmentation method based on the improved Conformer. In the Convolution Neural Network (CNN) branch, a cross-scale feature integration convolution module is designed, incorporating multi-receptive field convolution layers to enhance the model’s ability to capture long-range… More >

  • Open Access

    ARTICLE

    Weakly Supervised Network with Scribble-Supervised and Edge-Mask for Road Extraction from High-Resolution Remote Sensing Images

    Supeng Yu1, Fen Huang1,*, Chengcheng Fan2,3,4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 549-562, 2024, DOI:10.32604/cmc.2024.048608 - 25 April 2024

    Abstract Significant advancements have been achieved in road surface extraction based on high-resolution remote sensing image processing. Most current methods rely on fully supervised learning, which necessitates enormous human effort to label the image. Within this field, other research endeavors utilize weakly supervised methods. These approaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such as scribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised and edge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equipped with a distinct decoder module dedicated… More >

  • Open Access

    ARTICLE

    Deep Learning Models Based on Weakly Supervised Learning and Clustering Visualization for Disease Diagnosis

    Jingyao Liu1,2, Qinghe Feng4, Jiashi Zhao2,3, Yu Miao2,3, Wei He2, Weili Shi2,3, Zhengang Jiang2,3,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2649-2665, 2023, DOI:10.32604/cmc.2023.038891 - 08 October 2023

    Abstract The coronavirus disease 2019 (COVID-19) has severely disrupted both human life and the health care system. Timely diagnosis and treatment have become increasingly important; however, the distribution and size of lesions vary widely among individuals, making it challenging to accurately diagnose the disease. This study proposed a deep-learning disease diagnosis model based on weakly supervised learning and clustering visualization (W_CVNet) that fused classification with segmentation. First, the data were preprocessed. An optimizable weakly supervised segmentation preprocessing method (O-WSSPM) was used to remove redundant data and solve the category imbalance problem. Second, a deep-learning fusion method… More >

  • Open Access

    ARTICLE

    Weakly Supervised Abstractive Summarization with Enhancing Factual Consistency for Chinese Complaint Reports

    Ren Tao, Chen Shuang*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6201-6217, 2023, DOI:10.32604/cmc.2023.036178 - 29 April 2023

    Abstract A large variety of complaint reports reflect subjective information expressed by citizens. A key challenge of text summarization for complaint reports is to ensure the factual consistency of generated summary. Therefore, in this paper, a simple and weakly supervised framework considering factual consistency is proposed to generate a summary of city-based complaint reports without pre-labeled sentences/words. Furthermore, it considers the importance of entity in complaint reports to ensure factual consistency of summary. Experimental results on the customer review datasets (Yelp and Amazon) and complaint report dataset (complaint reports of Shenyang in China) show that the More >

  • Open Access

    ARTICLE

    The Lateral Conflict Risk Assessment for Low-altitude Training Airspace Using Weakly Supervised Learning Method

    Kaijun Xu1, Xueting Chen2, Yusheng Yao1, Shanshan Li1

    Intelligent Automation & Soft Computing, Vol.24, No.3, pp. 603-611, 2018, DOI:10.31209/2018.100000027

    Abstract The lateral conflict risk assessment of low-altitude training airspace strategic planning, which is based on the TSE errors has always been a difficult task for training flight research. In order to effectively evaluate the safety interval and lateral collision risk in training airspace, in this paper, TSE error performance using a weakly supervised learning method was modelled. First, the lateral probability density function of TSE is given by using a multidimensional random variable covariance matrix, and the risk model of a training flight lateral collision based on TSE error is established. The lateral conflict risk More >

Displaying 1-10 on page 1 of 7. Per Page