Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Static Analysis of Doubly-Curved Shell Structures of Smart Materials and Arbitrary Shape Subjected to General Loads Employing Higher Order Theories and Generalized Differential Quadrature Method

    Francesco Tornabene*, Matteo Viscoti, Rossana Dimitri

    CMES-Computer Modeling in Engineering & Sciences, Vol.133, No.3, pp. 719-798, 2022, DOI:10.32604/cmes.2022.022210 - 03 August 2022

    Abstract The article proposes an Equivalent Single Layer (ESL) formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions. A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates. The generalized blending methodology accounts for a distortion of the structure so that disparate geometries can be considered. Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum. In addition, re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model. The unknown… More > Graphic Abstract

    Static Analysis of Doubly-Curved Shell Structures of Smart Materials and Arbitrary Shape Subjected to General Loads Employing Higher Order Theories and Generalized Differential Quadrature Method

  • Open Access

    ARTICLE

    On Increasing Computational Efficiency of Local Integral Equation Method Combined with Meshless Implementations

    V. Sladek1, J. Sladek1, Ch. Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.63, No.3, pp. 243-264, 2010, DOI:10.3970/cmes.2010.063.243

    Abstract The paper deals with diminishing the prolongation of the computational time due to procedural evaluation of the shape functions and their derivatives in weak formulations implemented with meshless approximations. The proposed numerical techniques are applied to problems of stationary heat conduction in functionally graded media. Besides the investigation of the computational efficiency also the accuracy and convergence study are performed in numerical tests. More >

Displaying 1-10 on page 1 of 2. Per Page