Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    ARTICLE

    Image Hiding with High Robustness Based on Dynamic Region Attention in the Wavelet Domain

    Zengxiang Li1, Yongchong Wu2, Alanoud Al Mazroa3, Donghua Jiang4, Jianhua Wu5, Xishun Zhu6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 847-869, 2024, DOI:10.32604/cmes.2024.051762 - 20 August 2024

    Abstract Hidden capacity, concealment, security, and robustness are essential indicators of hiding algorithms. Currently, hiding algorithms tend to focus on algorithmic capacity, concealment, and security but often overlook the robustness of the algorithms. In practical applications, the container can suffer from damage caused by noise, cropping, and other attacks during transmission, resulting in challenging or even impossible complete recovery of the secret image. An image hiding algorithm based on dynamic region attention in the multi-scale wavelet domain is proposed to address this issue and enhance the robustness of hiding algorithms. In this proposed algorithm, a secret… More >

  • Open Access

    ARTICLE

    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340 - 08 July 2024

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

  • Open Access

    ARTICLE

    Weak Fault Feature Extraction of the Rotating Machinery Using Flexible Analytic Wavelet Transform and Nonlinear Quantum Permutation Entropy

    Lili Bai1,*, Wenhui Li1, He Ren1,2, Feng Li1, Tao Yan1, Lirong Chen3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4513-4531, 2024, DOI:10.32604/cmc.2024.051348 - 20 June 2024

    Abstract Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery, where weak fault characteristic signals hinder accurate fault state representation, we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform (FAWT) with Nonlinear Quantum Permutation Entropy. FAWT, leveraging fractional orders and arbitrary scaling and translation factors, exhibits superior translational invariance and adjustable fundamental oscillatory characteristics. This flexibility enables FAWT to provide well-suited wavelet shapes, effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults. In our approach,… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method of Energy Storage Unit of Circuit Breakers Based on EWT-ISSA-BP

    Tengfei Li1, Wenhui Zhang1, Ke Mi1, Qingming Lin1, Shuangwei Zhao2,*, Jiayi Song2

    Energy Engineering, Vol.121, No.7, pp. 1991-2007, 2024, DOI:10.32604/ee.2024.049460 - 11 June 2024

    Abstract Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers (LVCBs). A fault diagnosis algorithm based on an improved Sparrow Search Algorithm (ISSA) optimized Backpropagation Neural Network (BPNN) is proposed to improve the operational safety of LVCB. Taking the 1.5kV/4000A/75kA LVCB as an example. According to the current operating characteristics of the energy storage motor, fault characteristics are extracted based on Empirical Wavelet Transform (EWT). Traditional BPNN has problems such as difficulty adjusting network weights and thresholds, being sensitive to initial weights, and quickly falling into More >

  • Open Access

    ARTICLE

    Highly Differentiated Target Detection under Extremely Low-Light Conditions Based on Improved YOLOX Model

    Haijian Shao1,2,*, Suqin Lei1, Chenxu Yan3, Xing Deng1, Yunsong Qi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1507-1537, 2024, DOI:10.32604/cmes.2024.050140 - 20 May 2024

    Abstract This paper expounds upon a novel target detection methodology distinguished by its elevated discriminatory efficacy, specifically tailored for environments characterized by markedly low luminance levels. Conventional methodologies struggle with the challenges posed by luminosity fluctuations, especially in settings characterized by diminished radiance, further exacerbated by the utilization of suboptimal imaging instrumentation. The envisioned approach mandates a departure from the conventional YOLOX model, which exhibits inadequacies in mitigating these challenges. To enhance the efficacy of this approach in low-light conditions, the dehazing algorithm undergoes refinement, effecting a discerning regulation of the transmission rate at the pixel… More > Graphic Abstract

    Highly Differentiated Target Detection under Extremely Low-Light Conditions Based on Improved YOLOX Model

  • Open Access

    ARTICLE

    Image Fusion Using Wavelet Transformation and XGboost Algorithm

    Shahid Naseem1, Tariq Mahmood2,3, Amjad Rehman Khan2, Umer Farooq1, Samra Nawazish4, Faten S. Alamri5,*, Tanzila Saba2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 801-817, 2024, DOI:10.32604/cmc.2024.047623 - 25 April 2024

    Abstract Recently, there have been several uses for digital image processing. Image fusion has become a prominent application in the domain of imaging processing. To create one final image that proves more informative and helpful compared to the original input images, image fusion merges two or more initial images of the same item. Image fusion aims to produce, enhance, and transform significant elements of the source images into combined images for the sake of human visual perception. Image fusion is commonly employed for feature extraction in smart robots, clinical imaging, audiovisual camera integration, manufacturing process monitoring,… More >

  • Open Access

    ARTICLE

    Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models

    Mahmood A. Mahmood1,2,*, Khalaf Alsalem1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3431-3448, 2024, DOI:10.32604/cmc.2024.047604 - 26 March 2024

    Abstract Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses. Early detection of these diseases is essential for effective management. We propose a novel transformed wavelet, feature-fused, pre-trained deep learning model for detecting olive leaf diseases. The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images. The model has four main phases: preprocessing using data augmentation, three-level wavelet transformation, learning using pre-trained deep learning models, and a fused deep learning model. In the preprocessing phase, the image dataset is… More >

  • Open Access

    ARTICLE

    A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response

    Zhicheng Liu1, Long Zhao1,*, Guanru Wen1, Peng Yuan2, Qiu Jin1

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 541-555, 2023, DOI:10.32604/sdhm.2023.029760 - 17 November 2023

    Abstract The displacement of transmission tower feet can seriously affect the safe operation of the tower, and the accuracy of structural health monitoring methods is limited at the present stage. The application of deep learning method provides new ideas for structural health monitoring of towers, but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning (DL). In this paper, we propose a DT-DL based tower foot displacement monitoring method, which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element… More > Graphic Abstract

    A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on Combinatorial Neural Networks

    Tusongjiang Kari1, Sun Guoliang2, Lei Kesong1, Ma Xiaojing1,*, Wu Xian1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1437-1452, 2023, DOI:10.32604/iasc.2023.037012 - 21 June 2023

    Abstract Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation. Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections. For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model, the short-term prediction of wind power based on a combined neural network is proposed. First, the Bi-directional Long Short Term Memory (BiLSTM) network prediction model is constructed, and the bi-directional nature of the BiLSTM network is used… More >

  • Open Access

    ARTICLE

    A Novel Color Image Watermarking Method with Adaptive Scaling Factor Using Similarity-Based Edge Region

    Kali Gurkahraman1,*, Rukiye Karakis2, Hidayet Takci1

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 55-77, 2023, DOI:10.32604/csse.2023.037798 - 26 May 2023

    Abstract This study aimed to deal with three challenges: robustness, imperceptibility, and capacity in the image watermarking field. To reach a high capacity, a novel similarity-based edge detection algorithm was developed that finds more edge points than traditional techniques. The colored watermark image was created by inserting a randomly generated message on the edge points detected by this algorithm. To ensure robustness and imperceptibility, watermark and cover images were combined in the high-frequency subbands using Discrete Wavelet Transform and Singular Value Decomposition. In the watermarking stage, the watermark image was weighted by the adaptive scaling factor More >

Displaying 1-10 on page 1 of 72. Per Page