Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (564)
  • Open Access

    ARTICLE

    Sparsity-Enhanced Model-Based Method for Intelligent Fault Detection of Mechanical Transmission Chain in Electrical Vehicle

    Wangpeng He1,*, Yue Zhou1, Xiaoya Guo2, Deshun Hu1, Junjie Ye3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2495-2511, 2023, DOI:10.32604/cmes.2023.027896

    Abstract In today’s world, smart electric vehicles are deeply integrated with smart energy, smart transportation and smart cities. In electric vehicles (EVs), owing to the harsh working conditions, mechanical parts are prone to fatigue damages, which endanger the driving safety of EVs. The practice has proved that the identification of periodic impact characteristics (PICs) can effectively indicate mechanical faults. This paper proposes a novel model-based approach for intelligent fault diagnosis of mechanical transmission train in EVs. The essential idea of this approach lies in the fusion of statistical information and model information from a dynamic process. In the algorithm, a novel… More >

  • Open Access

    ARTICLE

    Computer Modelling of Compact 28/38 GHz Dual-Band Antenna for Millimeter-Wave 5G Applications

    Amit V. Patel1, Arpan Desai1, Issa Elfergani2,3,*, Hiren Mewada4, Chemseddine Zebiri5, Keyur Mahant1, Jonathan Rodriguez2, Raed Abd-Alhameed3

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2867-2879, 2023, DOI:10.32604/cmes.2023.026200

    Abstract A four-element compact dual-band patch antenna having a common ground plane operating at 28/38 GHz is proposed for millimeter-wave communication systems in this paper. The multiple-input-multiple-output (MIMO) antenna geometry consists of a slotted ellipse enclosed within a hollow circle which is orthogonally rotated with a connected partial ground at the back. The overall size of the four elements MIMO antenna is 2.24λ × 2.24λ (at 27.12 GHz). The prototype of four-element MIMO resonator is designed and printed using Rogers RT Duroid 5880 with εr = 2.2 and loss tangent = 0.0009 and having a thickness of 0.8 mm. It covers… More >

  • Open Access

    ARTICLE

    Development of Features for Early Detection of Defects and Assessment of Bridge Decks

    Ahmed Silik1,2,7, Xiaodong Wang3, Chenyue Mei3, Xiaolei Jin3, Xudong Zhou4, Wei Zhou4, Congning Chen4, Weixing Hong1,2, Jiawei Li1,2, Mingjie Mao1,2, Yuhan Liu1,2, Mohammad Noori5,6,*, Wael A. Altabey8,*

    Structural Durability & Health Monitoring, Vol.17, No.4, pp. 257-281, 2023, DOI:10.32604/sdhm.2023.023617

    Abstract Damage detection is an important area with growing interest in mechanical and structural engineering. One of the critical issues in damage detection is how to determine indices sensitive to the structural damage and insensitive to the surrounding environmental variations. Current damage identification indices commonly focus on structural dynamic characteristics such as natural frequencies, mode shapes, and frequency responses. This study aimed at developing a technique based on energy Curvature Difference, power spectrum density, correlation-based index, load distribution factor, and neutral axis shift to assess the bridge deck condition. In addition to tracking energy and frequency over time using wavelet packet… More > Graphic Abstract

    Development of Features for Early Detection of Defects and Assessment of Bridge Decks

  • Open Access

    ARTICLE

    An Optimized Approach for Spectrum Utilization in mmWave Massive MIMO 5G Wireless Networks

    Elsaid Md. Abdelrahim1,2, Mona Alduailij3, Mai Alduailij3, Romany F. Mansour4,*, Osama A. Ghoneim5

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1493-1505, 2023, DOI:10.32604/csse.2023.037976

    Abstract Massive multiple-input multiple-output (MIMO) systems that use the millimeter-wave (mm-wave) band have a higher frequency and more antennas, which leads to significant path loss, high power consumption, and server interference. Due to these issues, the spectrum efficiency is significantly reduced, making spectral efficiency improvement an important research topic for 5G communication. Together with communication in the terahertz (THz) bands, mmWave communication is currently a component of the 5G standards and is seen as a solution to the commercial bandwidth shortage. The quantity of continuous, mostly untapped bandwidth in the 30–300 GHz band has presented a rare opportunity to boost the capacity… More >

  • Open Access

    ARTICLE

    QBFO-BOMP Based Channel Estimation Algorithm for mmWave Massive MIMO Systems

    Xiaoli Jing, Xianpeng Wang*, Xiang Lan, Ting Su

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1789-1804, 2023, DOI:10.32604/cmes.2023.028477

    Abstract At present, the traditional channel estimation algorithms have the disadvantages of over-reliance on initial conditions and high complexity. The bacterial foraging optimization (BFO)-based algorithm has been applied in wireless communication and signal processing because of its simple operation and strong self-organization ability. But the BFO-based algorithm is easy to fall into local optimum. Therefore, this paper proposes the quantum bacterial foraging optimization (QBFO)-binary orthogonal matching pursuit (BOMP) channel estimation algorithm to the problem of local optimization. Firstly, the binary matrix is constructed according to whether atoms are selected or not. And the support set of the sparse signal is recovered… More >

  • Open Access

    ARTICLE

    Short-Term Wind Power Prediction Based on Combinatorial Neural Networks

    Tusongjiang Kari1, Sun Guoliang2, Lei Kesong1, Ma Xiaojing1,*, Wu Xian1

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1437-1452, 2023, DOI:10.32604/iasc.2023.037012

    Abstract Wind power volatility not only limits the large-scale grid connection but also poses many challenges to safe grid operation. Accurate wind power prediction can mitigate the adverse effects of wind power volatility on wind power grid connections. For the characteristics of wind power antecedent data and precedent data jointly to determine the prediction accuracy of the prediction model, the short-term prediction of wind power based on a combined neural network is proposed. First, the Bi-directional Long Short Term Memory (BiLSTM) network prediction model is constructed, and the bi-directional nature of the BiLSTM network is used to deeply mine the wind… More >

  • Open Access

    ARTICLE

    FLOW CHARACTERISTICS OF WET NATURAL GAS IN DIFFERENT THROTTLING DEVICES

    Xuewen Caoa,b,*, Qi Chua,b, Xiaodan Songa,b, Yuxuan Lia,b, Jiang Biana,b

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-9, 2019, DOI:10.5098/hmt.13.2

    Abstract Wet natural gas widely exists in the natural gas industry, and the selection of throttling devices plays an important role in wet natural gas transportation. In order to study the flow field characteristics of different throttling devices in wet natural gas pipelines, a set of Laval nozzles, orifice plates, and plate valves have been designed. The standard k-ε model was selected for numerical simulation. By changing inlet pressure, inlet temperature or volume fraction of water-liquid, the pressure field and temperature fields of different throttling devices were obtained, and the influence of the presence of a shockwave on the flow fields… More >

  • Open Access

    ARTICLE

    Early Diagnosis of Lung Tumors for Extending Patients’ Life Using Deep Neural Networks

    A. Manju1, R. kaladevi2, Shanmugasundaram Hariharan3, Shih-Yu Chen4,5,*, Vinay Kukreja6, Pradip Kumar Sharma7, Fayez Alqahtani8, Amr Tolba9, Jin Wang10

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 993-1007, 2023, DOI:10.32604/cmc.2023.039567

    Abstract The medical community has more concern on lung cancer analysis. Medical experts’ physical segmentation of lung cancers is time-consuming and needs to be automated. The research study’s objective is to diagnose lung tumors at an early stage to extend the life of humans using deep learning techniques. Computer-Aided Diagnostic (CAD) system aids in the diagnosis and shortens the time necessary to detect the tumor detected. The application of Deep Neural Networks (DNN) has also been exhibited as an excellent and effective method in classification and segmentation tasks. This research aims to separate lung cancers from images of Magnetic Resonance Imaging… More >

  • Open Access

    ARTICLE

    A Novel Color Image Watermarking Method with Adaptive Scaling Factor Using Similarity-Based Edge Region

    Kali Gurkahraman1,*, Rukiye Karakis2, Hidayet Takci1

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 55-77, 2023, DOI:10.32604/csse.2023.037798

    Abstract This study aimed to deal with three challenges: robustness, imperceptibility, and capacity in the image watermarking field. To reach a high capacity, a novel similarity-based edge detection algorithm was developed that finds more edge points than traditional techniques. The colored watermark image was created by inserting a randomly generated message on the edge points detected by this algorithm. To ensure robustness and imperceptibility, watermark and cover images were combined in the high-frequency subbands using Discrete Wavelet Transform and Singular Value Decomposition. In the watermarking stage, the watermark image was weighted by the adaptive scaling factor calculated by the standard deviation… More >

  • Open Access

    ARTICLE

    Higher Order OAM Mode Generation Using Wearable Antenna for 5G NR Bands

    Shehab Khan Noor1, Arif Mawardi Ismail1, Mohd Najib Mohd Yasin1,*, Mohamed Nasrun Osman1, Thennarasan Sabapathy1, Shakhirul Mat Salleh2, Ping Jack Soh3, Ali Hanafiah Rambe4, Nurulazlina Ramli5

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 537-551, 2023, DOI:10.32604/csse.2023.037381

    Abstract This paper presents a flexible and wearable textile array antenna designed to generate Orbital Angular Momentum (OAM) waves with Mode +2 at 3.5 GHz (3.4 to 3.6 GHz) of the sub-6 GHz fifth-generation (5G) New Radio (NR) band. The proposed antenna is based on a uniform circular array of eight microstrip patch antennas on a felt textile substrate. In contrast to previous works involving the use of rigid substrates to generate OAM waves, this work explored the use of flexible substrates to generate OAM waves for the first time. Other than that, the proposed antenna was simulated, analyzed, fabricated, and… More >

Displaying 41-50 on page 5 of 564. Per Page