Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (565)
  • Open Access

    ARTICLE

    DEVELOPMENT OF A 10 KW MICROWAVE APPLICATOR FOR THERMAL CRACKING OF LIGNITE BRIQUETTES

    Benjamin Lepersa,∗, Thomas Seitza, Guido Linka, John Jelonneka,b, Mark Zinkc

    Frontiers in Heat and Mass Transfer, Vol.6, pp. 1-6, 2015, DOI:10.5098/hmt.6.20

    Abstract A compact 10 kW microwave applicator operating at 2.45 GHz for fast volumetric heating and thermal cracking of lignite briquettes has been successfully designed and tested. In this paper, the applicator design and construction are presented together with a sequentially coupled electromagnetic, thermal-fluid and mechanical Comsol model. In a first step, this model allows us to calculate the power density inside the lignite material and the temperature distribution in the applicator for different water flow rates. In a second step, the total stress due to the thermal dilatation, the internal pressure inside the ceramic and the contact pressure from the… More >

  • Open Access

    ARTICLE

    A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response

    Zhicheng Liu1, Long Zhao1,*, Guanru Wen1, Peng Yuan2, Qiu Jin1

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 541-555, 2023, DOI:10.32604/sdhm.2023.029760

    Abstract The displacement of transmission tower feet can seriously affect the safe operation of the tower, and the accuracy of structural health monitoring methods is limited at the present stage. The application of deep learning method provides new ideas for structural health monitoring of towers, but the current amount of tower vibration fault data is restricted to provide adequate training data for Deep Learning (DL). In this paper, we propose a DT-DL based tower foot displacement monitoring method, which firstly simulates the wind-induced vibration response data of the tower under each fault condition by finite element method. Then the vibration signal… More > Graphic Abstract

    A Monitoring Method for Transmission Tower Foots Displacement Based on Wind-Induced Vibration Response

  • Open Access

    ARTICLE

    Microstrip Patch Antenna with an Inverted T-Type Notch in the Partial Ground for Breast Cancer Detections

    Nure Alam Chowdhury1, Lulu Wang2,*, Md Shazzadul Islam3, Linxia Gu1, Mehmet Kaya1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1301-1322, 2024, DOI:10.32604/cmes.2023.030844

    Abstract This study designs a microstrip patch antenna with an inverted T-type notch in the partial ground to detect tumor cells inside the human breast. The size of the current antenna is small enough (18 mm × 21 mm × 1.6 mm) to distribute around the breast phantom. The operating frequency has been observed from 6–14 GHz with a minimum return loss of −61.18 dB and the maximum gain of current proposed antenna is 5.8 dBi which is flexible with respect to the size of antenna. After the distribution of eight antennas around the breast phantom, the return loss curves were observed in the presence and absence of tumor cells inside… More > Graphic Abstract

    Microstrip Patch Antenna with an Inverted T-Type Notch in the Partial Ground for Breast Cancer Detections

  • Open Access

    ARTICLE

    Recognizing Breast Cancer Using Edge-Weighted Texture Features of Histopathology Images

    Arslan Akram1,2, Javed Rashid2,3,4, Fahima Hajjej5, Sobia Yaqoob1,6, Muhammad Hamid7, Asma Irshad8, Nadeem Sarwar9,*

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 1081-1101, 2023, DOI:10.32604/cmc.2023.041558

    Abstract Around one in eight women will be diagnosed with breast cancer at some time. Improved patient outcomes necessitate both early detection and an accurate diagnosis. Histological images are routinely utilized in the process of diagnosing breast cancer. Methods proposed in recent research only focus on classifying breast cancer on specific magnification levels. No study has focused on using a combined dataset with multiple magnification levels to classify breast cancer. A strategy for detecting breast cancer is provided in the context of this investigation. Histopathology image texture data is used with the wavelet transform in this technique. The proposed method comprises… More >

  • Open Access

    ARTICLE

    In-Situ Growing of Branched CNFs on Reusable RCFs to Construct Hierarchical Cross-Linked Composite for Enhanced Microwave Absorption

    Lei Liu*, Shenao Pang, Zhuhui Luo

    Journal of Renewable Materials, Vol.11, No.11, pp. 3891-3906, 2023, DOI:10.32604/jrm.2023.028192

    Abstract The recycling of carbon fibers and protection from unwanted microwave radiation are two important environmental issues that need to be addressed in modern society. Herein, branched carbon nanofibers (CNFs) were grown in-situ on recycled carbon fibers (RCFs) through the chemical vapor deposition method using nickel as catalysts and thiophene as aided-catalysts. The effect of thiophene on the growth morphology of CNFs was investigated. Correspondingly, branched CNFs-RCFs and straight CNFs-RCFs were respectively obtained in the presence and absence of thiophene. The microstructure and electromagnetic behaviour investigations have shown that the branched CNFs possess a typical multi-branched structure, with more defects, pores… More > Graphic Abstract

    <i>In-Situ</i> Growing of Branched CNFs on Reusable RCFs to Construct Hierarchical Cross-Linked Composite for Enhanced Microwave Absorption

  • Open Access

    ARTICLE

    Dynamic Response Analysis of Semi-Submersible Floating Wind Turbine with Different Wave Conditions

    Mingzhen Jiang1, Guanghui Qiao2, Jiwen Chen3, Xuemei Huang1,4,*, Leian Zhang1,4, Yongshuang Wen1, Yuhuan Zhang1

    Energy Engineering, Vol.120, No.11, pp. 2531-2545, 2023, DOI:10.32604/ee.2023.029702

    Abstract To address the problem of poor wave resistance of existing offshore floating wind turbines, a new type of semi-submersible platform with truncated-cone-type upper pontoons is proposed by combining the characteristics of offshore wind turbine semi-submersible floating platforms. Based on the coupled hydrodynamic, aerodynamic, and mooring force physical fields of FAST, the surge, heave, pitch, and yaw motions responses of the floating wind turbine under different wave heights and periods are obtained, and the mooring line tension responses are also obtained; and compare the dynamic response of the new semi-submersible platform with the OC4-DeepCwind platform at six degrees of freedom. The… More >

  • Open Access

    ARTICLE

    A New Scheme of the ARA Transform for Solving Fractional-Order Waves-Like Equations Involving Variable Coefficients

    Yu-Ming Chu1, Sobia Sultana2, Shazia Karim3, Saima Rashid4,*, Mohammed Shaaf Alharthi5

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 761-791, 2024, DOI:10.32604/cmes.2023.028600

    Abstract The goal of this research is to develop a new, simplified analytical method known as the ARA-residue power series method for obtaining exact-approximate solutions employing Caputo type fractional partial differential equations (PDEs) with variable coefficient. ARA-transform is a robust and highly flexible generalization that unifies several existing transforms. The key concept behind this method is to create approximate series outcomes by implementing the ARA-transform and Taylor’s expansion. The process of finding approximations for dynamical fractional-order PDEs is challenging, but the ARA-residual power series technique magnifies this challenge by articulating the solution in a series pattern and then determining the series… More >

  • Open Access

    ARTICLE

    Resource Allocation for IRS Assisted mmWave Wireless Powered Sensor Networks with User Cooperation

    Yonghui Lin1, Zhengyu Zhu2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 663-677, 2024, DOI:10.32604/cmes.2023.028584

    Abstract In this paper, we investigate IRS-aided user cooperation (UC) scheme in millimeter wave (mmWave) wireless-powered sensor networks (WPSN), where two single-antenna users are wireless powered in the wireless energy transfer (WET) phase first and then cooperatively transmit information to a hybrid access point (AP) in the wireless information transmission (WIT) phase, following which the IRS is deployed to enhance the system performance of the WET and WIT. We maximized the weighted sum-rate problem by jointly optimizing the transmit time slots, power allocations, and the phase shifts of the IRS. Due to the non-convexity of the original problem, a semidefinite programming… More >

  • Open Access

    ARTICLE

    Effect of Blasting Stress Wave on Dynamic Crack Propagation

    Huizhen Liu1,2, Duanying Wan3, Meng Wang3, Zheming Zhu3, Liyun Yang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 349-368, 2024, DOI:10.32604/cmes.2023.028197

    Abstract Stress waves affect the stress field at the crack tip and dominate the dynamic crack propagation. Therefore, evaluating the influence of blasting stress waves on the crack propagation behavior and the mechanical characteristics of crack propagation is of great significance for engineering blasting. In this study, ANSYS/LS-DYNA was used for blasting numerical simulation, in which the propagation characteristics of blasting stress waves and stress field distribution at the crack tip were closely observed. Moreover, ABAQUS was applied for simulating the crack propagation path and calculating dynamic stress intensity factors (DSIFs). The universal function was calculated by the fractal method. The… More >

  • Open Access

    REVIEW

    Study of Intelligent Approaches to Identify Impact of Environmental Temperature on Ultrasonic GWs Based SHM: A Review

    Saqlain Abbas1,2,*, Zulkarnain Abbas3, Xiaotong Tu4, Yanping Zhu2

    Journal on Artificial Intelligence, Vol.5, pp. 43-56, 2023, DOI:10.32604/jai.2023.040948

    Abstract Structural health monitoring (SHM) is considered an effective approach to analyze the efficient working of several mechanical components. For this purpose, ultrasonic guided waves can cover long-distance and assess large infrastructures in just a single test using a small number of transducers. However, the working of the SHM mechanism can be affected by some sources of variations (i.e., environmental). To improve the final results of ultrasonic guided wave inspections, it is necessary to highlight and attenuate these environmental variations. The loading parameters, temperature and humidity have been recognized as the core environmental sources of variations that affect the SHM sensing… More >

Displaying 21-30 on page 3 of 565. Per Page