Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (673)
  • Open Access

    EDITORIAL

    Artificial Intelligence-Driven Advanced Wave Energy Planning and Control: Framework, Challenges and Perspectives

    Bo Yang1,*, Guo Zhou1, Shuai Zhou2, Yaxing Ren3

    Energy Engineering, Vol.122, No.10, pp. 3905-3915, 2025, DOI:10.32604/ee.2025.069600 - 30 September 2025

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Research on Wave Energy Harvesting Technology Using a Hybrid Triboelectric Nanogenerator and Electromagnetic Generator

    Jingying Zou1,#, Wenzhou Liu1,#, Yaoxuan Han2, Chenxi Wang3, Chao Dong4, Youbo Jia5,*

    Energy Engineering, Vol.122, No.10, pp. 4081-4097, 2025, DOI:10.32604/ee.2025.067544 - 30 September 2025

    Abstract The ocean, as one of Earth’s largest natural resources, covers over 70% of the planet’s surface and holds vast water energy potential. Building on this context, this study designs a hybrid generator (WWR-TENG) that integrates a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG). TENG is a new technology that can capture mechanical energy from the environment and convert it into electrical energy, and is particularly suitable for common natural or man-made power sources such as human movement, wind power, and water flow. EMG is a device that converts mechanical energy into electrical energy through… More >

  • Open Access

    ARTICLE

    Coupled Effects of Incident Waves Forcing and Internal Tank Sloshing on the Dynamics of Twin Floating Bodies

    Jialong Jiao1, Mengyun Jiang1, Hang Xie2,3,*, Yuanming Chen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2075-2100, 2025, DOI:10.32604/fdmp.2025.069064 - 30 September 2025

    Abstract The growing demand for ocean space has generated significant interest in multi-body floating systems, where gap resonance in confined regions plays a critical role in ensuring the safety of offshore operations. This study develops a numerical tank model using the Smoothed Particle Hydrodynamics (SPH) method, implemented through the open-source code DualSPHysics, to investigate hydrodynamic resonance in a twin-floater system and to examine the influence of internal tank sloshing on its hydrodynamic characteristics. The hydrodynamic behavior of the gap flow between a fixed twin-floater system in the numerical tank is validated through systematic comparison with experimental… More >

  • Open Access

    ARTICLE

    Shallow Water Waves with Surface Tension by Laplace–Adomian Decomposition

    Oswaldo González-Gaxiola1, Yakup Yildirim2,3,4, Luminita Moraru5,6, Anjan Biswas7,8,9,10,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2273-2287, 2025, DOI:10.32604/fdmp.2025.067959 - 30 September 2025

    Abstract This study presents a numerical investigation of shallow water wave dynamics with particular emphasis on the role of surface tension. In the absence of surface tension, shallow water waves are primarily driven by gravity and are well described by the classical Boussinesq equation, which incorporates fourth-order dispersion. Under this framework, solitary and shock waves arise through the balance of nonlinearity and gravity-induced dispersion, producing waveforms whose propagation speed, amplitude, and width depend largely on depth and initial disturbance. The resulting dynamics are comparatively smoother, with solitary waves maintaining coherent structures and shock waves displaying gradual… More > Graphic Abstract

    Shallow Water Waves with Surface Tension by Laplace–Adomian Decomposition

  • Open Access

    ARTICLE

    Solving the BBMB Equation in Shallow Water Waves via Space-Time MQ-RBF Collocation

    Hongwei Ma1, Yingqian Tian2,*, Fuzhang Wang3,*, Quanfu Lou4, Lijuan Yu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3419-3432, 2025, DOI:10.32604/cmes.2025.070791 - 30 September 2025

    Abstract This study introduces a novel single-layer meshless method, the space-time collocation method based on multiquadric-radial basis functions (MQ-RBF), for solving the Benjamin-Bona-Mahony-Burgers (BBMB) equation. By reconstructing the time variable as a space variable, this method establishes a combined space-time structure that can eliminate the two-step computational process required in traditional grid methods. By introducing shape parameter-optimized MQ-RBF, high-precision discretization of the nonlinear, dispersive, and dissipative terms in the BBMB equation is achieved. The numerical experiment section validates the effectiveness of the proposed method through three benchmark examples. This method shows significant advantages in computational efficiency, More >

  • Open Access

    ARTICLE

    Meyer Wavelet Transform and Jaccard Deep Q Net for Small Object Classification Using Multi-Modal Images

    Mian Muhammad Kamal1,*, Syed Zain Ul Abideen2, M. A. Al-Khasawneh3,4, Alaa M. Momani4, Hala Mostafa5, Mohammed Salem Atoum6, Saeed Ullah7, Jamil Abedalrahim Jamil Alsayaydeh8,*, Mohd Faizal Bin Yusof9, Suhaila Binti Mohd Najib8

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3053-3083, 2025, DOI:10.32604/cmes.2025.067430 - 30 September 2025

    Abstract Accurate detection of small objects is critically important in high-stakes applications such as military reconnaissance and emergency rescue. However, low resolution, occlusion, and background interference make small object detection a complex and demanding task. One effective approach to overcome these issues is the integration of multimodal image data to enhance detection capabilities. This paper proposes a novel small object detection method that utilizes three types of multimodal image combinations, such as Hyperspectral–Multispectral (HS-MS), Hyperspectral–Synthetic Aperture Radar (HS-SAR), and HS-SAR–Digital Surface Model (HS-SAR-DSM). The detection process is done by the proposed Jaccard Deep Q-Net (JDQN), which More >

  • Open Access

    PROCEEDINGS

    Scattering Characterization of Elastic Wave in Solid Media and Scale Inversion Study of Inhomogeneous Bodies

    Ning Liu1,*, Dong Cai1, Shi-Kai Jian2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012511

    Abstract One intriguing phenomenon in seismograms is seismic coda, once dismissed as noise. In 1969, seismologist Aki proposed that these coda waves reveal critical insights into small-scale inhomogeneities in the Earth's interior [1]. This scattering effect highlights geological complexity and offers valuable information for exploring targets like unconventional oil and gas reservoirs [2-5]. This paper examines elastic wave propagation and scattering in solid media. We validate the effectiveness of simulating wave field scattering by employing the discrete element method alongside energy radiative transfer theory. Then, we explore elastic wave scattering and scale inversion of non-homogeneous bodies More >

  • Open Access

    ARTICLE

    Numerical Analysis of Mooring System Hydrodynamics under Irregular Wave Conditions

    Yini Shen, Azhar Halik*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 1969-2000, 2025, DOI:10.32604/fdmp.2025.067813 - 12 September 2025

    Abstract This study employs the Smoothed Particle Hydrodynamics (SPH) method to develop a computational fluid dynamics (CFD) model for analyzing the interaction between rogue waves and mooring systems. Four floating body configurations are investigated: (1) dual rectangular prisms, (2) rectangular prism–sphere composites, (3) sphere–rectangular prism composites, and (4) dual spheres. These configurations are systematically evaluated under varying mooring conditions to assess their hydrodynamic performance and wave attenuation capabilities. The model accurately captures the complex fluid–structure interaction dynamics between moored floating breakwaters and incident wave fields. Among the configurations, the dual rectangular prism system demonstrates superior performance More > Graphic Abstract

    Numerical Analysis of Mooring System Hydrodynamics under Irregular Wave Conditions

  • Open Access

    ARTICLE

    Hybrid Wavelet Methods for Nonlinear Multi-Term Caputo Variable-Order Partial Differential Equations

    Junseo Lee1, Bongsoo Jang1, Umer Saeed1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2165-2189, 2025, DOI:10.32604/cmes.2025.069023 - 31 August 2025

    Abstract In recent years, variable-order fractional partial differential equations have attracted growing interest due to their enhanced ability to model complex physical phenomena with memory and spatial heterogeneity. However, existing numerical methods often struggle with the computational challenges posed by such equations, especially in nonlinear, multi-term formulations. This study introduces two hybrid numerical methods—the Linear-Sine and Cosine (L1-CAS) and fast-CAS schemes—for solving linear and nonlinear multi-term Caputo variable-order (CVO) fractional partial differential equations. These methods combine CAS wavelet-based spatial discretization with L1 and fast algorithms in the time domain. A key feature of the approach is More >

  • Open Access

    ARTICLE

    A Time-Domain Irregular Wave Model with Different Random Numbers for FOWT Support Structures

    Shen-Haw Ju*, Yi-Chen Huang

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1631-1654, 2025, DOI:10.32604/cmes.2025.067679 - 31 August 2025

    Abstract This study focuses on determining the second-order irregular wave loads in the time domain without using the Inverse Fast Fourier Transform (IFFT). Considering the substantial displacement effects that Floating Offshore Wind Turbine (FOWT) support structures undergo when subjected to wave loads, the time-domain wave method is more suitable, while the frequency-domain method requiring IFFT cannot be used for moving bodies. Nonetheless, the computational challenges posed by the considerable computer time requirements of the time-domain wave method remain a significant obstacle. Thus, the paper incorporates various numerical schemes, including parallel computing and extrapolation of wave forces… More >

Displaying 21-30 on page 3 of 673. Per Page