Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Cervical Cancer Detection Based on Novel Decision Tree Approach

    S. R. Sylaja Vallee Narayan1,*, R. Jemila Rose2

    Computer Systems Science and Engineering, Vol.44, No.2, pp. 1025-1038, 2023, DOI:10.32604/csse.2023.022564 - 15 June 2022

    Abstract Cervical cancer is a disease that develops in the cervix’s tissue. Cervical cancer mortality is being reduced due to the growth of screening programmers. Cervical cancer screening is a big issue because the majority of cervical cancer screening treatments are invasive. Hence, there is apprehension about standard screening procedures, as well as the time it takes to learn the results. There are different methods for detecting problems in the cervix using Pap (Papanicolaou-stained) test, colposcopy, Computed Tomography (CT), Magnetic Resonance Image (MRI) and ultrasound. To obtain a clear sketch of the infected regions, using a… More >

  • Open Access

    ARTICLE

    An Intelligent Framework for Recognizing Social Human-Object Interactions

    Mohammed Alarfaj1, Manahil Waheed2, Yazeed Yasin Ghadi3, Tamara al Shloul4, Suliman A. Alsuhibany5, Ahmad Jalal2, Jeongmin Park6,*

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1207-1223, 2022, DOI:10.32604/cmc.2022.025671 - 18 May 2022

    Abstract Human object interaction (HOI) recognition plays an important role in the designing of surveillance and monitoring systems for healthcare, sports, education, and public areas. It involves localizing the human and object targets and then identifying the interactions between them. However, it is a challenging task that highly depends on the extraction of robust and distinctive features from the targets and the use of fast and efficient classifiers. Hence, the proposed system offers an automated body-parts-based solution for HOI recognition. This system uses RGB (red, green, blue) images as input and segments the desired parts of… More >

  • Open Access

    ARTICLE

    Diagnosis of COVID-19 Infection Using Three-Dimensional Semantic Segmentation and Classification of Computed Tomography Images

    Javaria Amin1, Muhammad Sharif2, Muhammad Almas Anjum3, Yunyoung Nam4,*, Seifedine Kadry5, David Taniar6

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 2451-2467, 2021, DOI:10.32604/cmc.2021.014199 - 13 April 2021

    Abstract Coronavirus 19 (COVID-19) can cause severe pneumonia that may be fatal. Correct diagnosis is essential. Computed tomography (CT) usefully detects symptoms of COVID-19 infection. In this retrospective study, we present an improved framework for detection of COVID-19 infection on CT images; the steps include pre-processing, segmentation, feature extraction/fusion/selection, and classification. In the pre-processing phase, a Gabor wavelet filter is applied to enhance image intensities. A marker-based, watershed controlled approach with thresholding is used to isolate the lung region. In the segmentation phase, COVID-19 lesions are segmented using an encoder-/decoder-based deep learning model in which deepLabv3… More >

  • Open Access

    ARTICLE

    Ore Image Segmentation Method Based on U-Net and Watershed

    Hui Li1, Chengwei Pan2, 3, Ziyi Chen1, Aziguli Wulamu2, 3, *, Alan Yang4

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 563-578, 2020, DOI:10.32604/cmc.2020.09806 - 23 July 2020

    Abstract Ore image segmentation is a key step in an ore grain size analysis based on image processing. The traditional segmentation methods do not deal with ore textures and shadows in ore images well Those methods often suffer from under-segmentation and over-segmentation. In this article, in order to solve the problem, an ore image segmentation method based on U-Net is proposed. We adjust the structure of U-Net to speed up the processing, and we modify the loss function to enhance the generalization of the model. After the collection of the ore image, we design the annotation More >

  • Open Access

    ARTICLE

    GIS analysis of hypsometry and basin asymmetry factor in Htab river basin and tectonic implications (Central Atlas, Tunisia)

    Ali Chaieb, Noamen Rebai

    Revue Internationale de Géomatique, Vol.29, No.3, pp. 287-296, 2019, DOI:10.3166/rig.2019.00082

    Abstract The geomorphology of the Htab river watershed is mainly guided by the action of the E-W Kasserine fault. This activity influenced the installed hydrographic system. To see the impact of neotectonic on the Htab river watershed, four morphometric indices were applied: the elongation ratio, the hypsometric curve, the hypsometric integral, and the asymmetry factor. The processing and calculation of these indices were based on global DEMs (Digital Elevation Models). The result obtained shows an important link between the activity of the Kasserine fault, the geomorphological behavior of the Htab river watershed and the hydrographic network. More >

  • Open Access

    ARTICLE

    Adaptive Image Enhancement Using Hybrid Particle Swarm Optimization and Watershed Segmentation

    N. Mohanapriya1, Dr. B. Kalaavathi2

    Intelligent Automation & Soft Computing, Vol.25, No.4, pp. 663-672, 2019, DOI:10.31209/2018.100000041

    Abstract Medical images are obtained straight from the medical acquisition devices so that, the image quality becomes poor and may contain noises. Low contrast and poor quality are the major issues in the production of medical images. Medical imaging enhancement technology gives way to solve these issues; it helps the doctors to see the interior portions of the body for early diagnosis, also it improves the features the visual aspects of an image for a right diagnosis. This paper proposes a new blend of Particle Swarm Optimization (PSO) and Accelerated Particle Swarm Optimization (APSO) called Hybrid… More >

  • Open Access

    ARTICLE

    A Learning Based Brain Tumor Detection System

    Sultan Noman Qasem1,2, Amar Nazar3, Attia Qamar4, Shahaboddin Shamshirband5,6,*, Ahmad Karim4

    CMC-Computers, Materials & Continua, Vol.59, No.3, pp. 713-727, 2019, DOI:10.32604/cmc.2019.05617

    Abstract Brain tumor is one of the most dangerous disease that causes due to uncontrollable and abnormal cell partition. In this paper, we have used MRI brain scan in comparison with CT brain scan as it is less harmful to detect brain tumor. We considered watershed segmentation technique for brain tumor detection. The proposed methodology is divided as follows: pre-processing, computing foreground applying watershed, extract and supply features to machine learning algorithms. Consequently, this study is tested on big data set of images and we achieved acceptable accuracy from K-NN classification algorithm in detection of brain More >

  • Open Access

    ARTICLE

    A Method of Obtaining Catchment Basins with Contour Lines for Foam Image Segmentation

    Yanpeng Wu1, Xiaoqi Peng1,*, Mohammad Nur2, Hengfu Yang1

    CMC-Computers, Materials & Continua, Vol.60, No.3, pp. 1155-1170, 2019, DOI:10.32604/cmc.2019.06123

    Abstract Foam image segmentation, represented by watershed algorithm, is wildly used in the extraction of bubble morphology features. H-minima transformation was proved to be effective in locating the catchment basins in the traditional watershed segmentation method. To further improve the accuracy of watershed segmentation, method of top-bottom-cap filters and method of morphological reconstruction were implied to marking the catchment basins. In this paper, instead of H-minima transformation, a method of contour lines is specially proposed to obtain the catchment basins for foam image segmentation by using top-bottom-cap filters and less morphological reconstruction. Experimental results in foam More >

  • Open Access

    ARTICLE

    The nutrient accumulation pattern and cycling in natural secondary forests in North China. A case study from the Caijiachuan watershed, Shanxi Province

    Wei TX1, XJ Zhang1,2, JZ Zhu1

    Phyton-International Journal of Experimental Botany, Vol.83, pp. 213-223, 2014, DOI:10.32604/phyton.2014.83.213

    Abstract In order to examine the nutrient content, and the distribution and accumulation patterns of individual nutrients in the natural secondary forests (NSFs), sample NSF plots were selected in the Caijiachuan watershed on the Loess Plateau. On the basis of a comprehensive field inventory to the NSFs in Caijiachuan watershed, a 40 m × 40 m sample plot was selected as the representative plot. Each tree plant was then measured to select the standard tree in accordance with a diameter-scale. For measurement of the biomass in the above-ground part of the tree, it was divided into… More >

Displaying 1-10 on page 1 of 9. Per Page