Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Preparation of Environmentally Friendly Urea-Hexanediamine-Glyoxal (HUG) Resin Wood Adhesive

    Qianyu Zhang1,2,#, Shi Chen1,2,#, Long Cao1,2, Hong Lei3, Antonio Pizzi4, Xuedong Xi1,2,*, Guanben Du1,2

    Journal of Renewable Materials, Vol.12, No.2, pp. 235-244, 2024, DOI:10.32604/jrm.2023.029537 - 11 March 2024

    Abstract Using non-toxic, low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal (UG) resin adhesive is a hot research topic that could be of great interest for the wood industry. However, urea-glyoxal (UG) resins prepared by just using glyoxal instead of formaldehyde usually yields a lower degree of polymerization. This results in a poorer bonding performance and water resistance of UG resins. A good solution is to pre-react urea to preform polyurea molecules presenting already a certain degree of polymerization, and then to condense these with glyoxal to obtain a novel UG resin. Therefore, in this… More > Graphic Abstract

    Preparation of Environmentally Friendly Urea-Hexanediamine-Glyoxal (HUG) Resin Wood Adhesive

  • Open Access

    ARTICLE

    Design and Development of Composite Plywood that Integrates Fire Resistance, Water Resistance and Wear Resistance

    Xingyu Liang1, Xiaoyu Gu1, Myint Myint Paing Hsu2, Yuhang He1, Rongzhuo Zhang1, Conghui Cai3, Zheng Wang1,*

    Journal of Renewable Materials, Vol.11, No.5, pp. 2333-2344, 2023, DOI:10.32604/jrm.2023.026137 - 13 February 2023

    Abstract In order to improve the fire resistance, water resistance and wear resistance of ordinary plywood products in the wood processing industry, three composite structures of plywood products S1, S2 and S3 were designed in this paper, and a reasonable production process was proposed. Through the physical and mechanical properties and fire resistance testing and technical and economic analysis, the applicability of composite plywood was evaluated. The results of the study showed that the physical mechanics of the three kinds of composite structure plywood met the standard requirements, and their fire resistance was far better than… More >

  • Open Access

    ARTICLE

    High Water Resistance and Enhanced Mechanical Properties of Bio-Based Waterborne Polyurethane Enabled by in-situ Construction of Interpenetrating Polymer Network

    Henghui Deng1,2, Jingyi Lu1,2, Dunsheng Liang1,2, Xiaomin Wang1,2, Tongyao Wang1,2, Weihao Zhang1,2, Jing Wang3,*, Chaoqun Zhang1,2,*

    Journal of Renewable Materials, Vol.11, No.3, pp. 1209-1222, 2023, DOI:10.32604/jrm.2022.023371 - 31 October 2022

    Abstract In this study, acrylic acid was used as a neutralizer to prepare bio-based WPU with an interpenetrating polymer network structure by thermally induced free radical emulsion polymerization. The effects of the content of acrylic acid on the properties of the resulting waterborne polyurethane-poly (acrylic acid) (WPU-PAA) dispersion and the films were systematically investigated. The results showed that the cross-linking density of the interpenetrating network polymers was increased and the interlocking structure of the soft and hard phase dislocations in the molecular segments of the double networks was tailored with increasing the content of acrylic acid, More > Graphic Abstract

    High Water Resistance and Enhanced Mechanical Properties of Bio-Based Waterborne Polyurethane Enabled by <i>in-situ</i> Construction of Interpenetrating Polymer Network

  • Open Access

    REVIEW

    Research Progress of Soybean Protein Adhesive: A Review

    Yantao Xu1, Yufei Han1, Jianzhang Li1, Jing Luo2, Sheldon Q. Shi3, Jingchao Li1, Qiang Gao1,*, An Mao4,*

    Journal of Renewable Materials, Vol.10, No.10, pp. 2519-2541, 2022, DOI:10.32604/jrm.2022.020750 - 08 June 2022

    Abstract Traditional formaldehyde-based adhesives rely excessively on petrochemical resources, release toxic gases, and pollute the environment. Plant-derived soybean protein adhesives are eco-friendly materials that have the potential to replace the formaldehyde-based adhesives used to fabricate wood-based panels. However, the poor water resistance, high brittleness, and poor mildew resistance of soybean protein adhesives limit their industrial applications. This article reviews recent research progress in the modification of soybean protein adhesives for improving the bonding performance of adhesives used for wood-based panel fabrication. Modification methods were summarized in terms of water resistance, solid content, and mildew resistance. The More >

  • Open Access

    ARTICLE

    Engineered Wood/Bamboo Laminated Composites for Outdoor Hydrophilic Platforms: Structural Design and Performance

    Lifeng Ji, Qiuxia Zhang, Fei Rao*

    Journal of Renewable Materials, Vol.10, No.9, pp. 2477-2487, 2022, DOI:10.32604/jrm.2022.021761 - 30 May 2022

    Abstract Landscape designers increasingly prefer to use wood/bamboo-based composites for outdoor hydrophilic platforms owing to their natural surface texture, high performance, and sustainability to facilitate extensive interaction between people and water and enable the full range of ecological functions of water resources. In this study, four laminated composite (LC) structures were designed and manufactured using fluffed bamboo and wood veneers. Their surface textures, profile densities, water resistances, and mechanical properties were then evaluated. The type of fluffed veneer of the surface layer determined the texture of the LC surface. The specific structures of fluffed bamboo and More >

  • Open Access

    ARTICLE

    Enhanced Water Resistance Performance of Castor Oil—Based Waterborne Polyurethane Modified by Methoxysilane Coupling Agents via Thiol-Ene Photo Click Reaction

    Zhipeng He1,2, Junqi Xue1,2, Yanzi Ke1,2, Ying Luo1,2,*, Qiming Lu1,2, Yuehua Xu1,2, Chaoqun Zhang1,2,*

    Journal of Renewable Materials, Vol.10, No.3, pp. 591-604, 2022, DOI:10.32604/jrm.2022.017790 - 28 September 2021

    Abstract Nowadays, waterborne polyurethanes (WPUs) prepared from renewable resources has attracted more and more attention. However, due to its structure, the prepared films easily swells in water and greatly affects the application range of WPUs. Therefore, solving the problem of water resistance is a way to improve the application range of WPUs. In this study, a series of WPU dispersions were prepared using castor oil as the bio-based polyol. Besides, the thiol-ene photo click reaction was carried out on the WPU films for silane modification. The effect of the silane modification on the chemical structures of… More > Graphic Abstract

    Enhanced Water Resistance Performance of Castor Oil—Based Waterborne Polyurethane Modified by Methoxysilane Coupling Agents via Thiol-Ene Photo Click Reaction

  • Open Access

    ARTICLE

    Effect of the Proportion of Bamboo Scraps on the Properties of Bamboo Scraps/Magnesium Oxychloride Composites

    Long Zheng, Yiqiang Wu, Shu Wang, Guoan Sheng, Baorong Sun, Yingfeng Zuo*

    Journal of Renewable Materials, Vol.9, No.10, pp. 1729-1739, 2021, DOI:10.32604/jrm.2021.015143 - 12 May 2021

    Abstract This study was designed to solve the problem of large waste volume from bamboo processing residues in recent years. Using magnesium oxychloride (MO) cementitious material as the main material and bamboo residue (BR) as the reinforcing material, a BR/MO composite material was prepared. The effects of BR amount on the molding properties, mechanical strength, and water resistance of BR/MO composites were examined and discussed. Scanning electron microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis were used to characterize composite microscopic morphology, crystalline structure, and heat resistance. The results showed that, when the BR content was… More >

  • Open Access

    ARTICLE

    Renewable Additives that Improve Water Resistance of Cellulose Composite Materials

    Heather L. Buckley1*, Caitlin H. Touchberry2, Jonathan P. McKinley2, Zachary S. Mathe1, Hurik Muradyan1, Hannah Ling2, Raj P. Fadadu1, Martin J. Mulvihill1, Susan E. Amrose2

    Journal of Renewable Materials, Vol.5, No.1, pp. 1-13, 2017, DOI:10.7569/JRM.2016.634109

    Abstract Waste cardboard is an underutilized resource that can be redirected for the creation of safer and higher quality building materials for low-income housing in the developing world, as well as to produce better materials for indoor environments in developed-world contexts. Using a renewable biobased binder and benign additives, we have improved the water resistance of a cardboard-based composite material, overcoming one of the major barriers to scaling and adoption of this class of materials. Resistance to water uptake was significantly increased with several additives and was increased over 900-fold in the best case. Strength and More >

  • Open Access

    ARTICLE

    Causes of the Water Resistance of Welded Joints of Paduk Wood (Pterocarpus soyauxii Taub.)

    T. Ganier, J. Hu, A. Pizzi*

    Journal of Renewable Materials, Vol.1, No.1, pp. 79-82, 2013, DOI:10.7569/JRM.2012.634101

    Abstract Linear vibration welding of extractive rich Paduk wood from central Africa containing a high proportion of a native mixture of water-insoluble extractives, or of low water solubility, has been shown to yield joints of much upgraded water resistance. This has been shown to be due to the protecting infl uence the extractives from the wood itself has on the welded interphase, due to their inherent water repellence. Joints of unusually high percentage wood failure but modest strength were obtained; Paduk wood brittleness apparently yielding weld line strengths always higher than that of the surrounding wood More >

Displaying 1-10 on page 1 of 9. Per Page