Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Effect of Tetramethylurea (TMU) on Polysulfone Membrane Performance for Atrazine-containing Wastewater Treatment

    NIKITA GUPTA, SARITA KALLA, Z.V.P. MURTHY*

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 317-328, 2023, DOI:10.32381/JPM.2023.40.3-4.12

    Abstract Tetramethylurea (TMU) is a good solvent for organic substances and has received little attention as compared to other solvents. The TMU is a polar solution and is one of the molecules with an amphiphilic character. In the present work, an attempt has been made to use TMU as an additive in the preparation of nanofiltration membranes to improve the hydrophilicity of the membrane. The polysulfone membrane has been modified by incorporating different concentrations of TMU (0, 0.5, and 1 wt.%) in order to check the rejection of atrazine in water. This study aim is to optimize the conditions to enhance… More >

  • Open Access

    ARTICLE

    Evaluating the Effects of Aquaculture Wastewater Irrigation with Fertilizer Reduction on Greenhouse Tomato Production, Economic Benefits and Soil Nitrogen Characteristics

    Hang Guo1,2,3, Linxian Liao1,2,3, Zhenhao Zheng4, Junzeng Xu1,2,3,*, Qi Wei1,2,3, Peng Chen1,2,3, Kechun Wang1,2,3

    Phyton-International Journal of Experimental Botany, Vol.92, No.12, pp. 3291-3304, 2023, DOI:10.32604/phyton.2023.044051

    Abstract

    The utilization of aquaculture wastewater as irrigation is an effective way to recycle and reuse water and nitrogen fertilizer resources because it contains numerous nutrients. However, it is still unclear that the pattern of substituting aquaculture wastewater irrigation for fertilizer supplementing is conducive to improving the soil nitrogen status, fruit yield and water-fertilizer use efficiency for tomato production. In this context, the experiment was intended to establish the appropriate irrigation regime of aquaculture wastewater in tomato production for freshwater replacement and fertilizer reduction to ensure good yields. Pot experiments were conducted with treatments as farmers accustomed to irrigation and fertilization… More >

  • Open Access

    REVIEW

    Malachite Green Adsorption Using Carbon-Based and Non-Conventional Adsorbent Made from Biowaste and Biomass: A Review

    Annisa Ardiyanti, Suprapto Suprapto, Yatim Lailun Ni’mah*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3789-3806, 2023, DOI:10.32604/jrm.2023.031354

    Abstract Dyes are pervasive contaminants in wastewater, posing significant health risks to both humans and animals. Among the various methods employed for effective dye removal, adsorption has emerged as a highly promising approach due to its notable advantages, including high efficiency, cost-effectiveness, low energy consumption, and operational simplicity compared to alternative treatments. This comprehensive review focuses on investigating adsorbents derived from biowastes and biomass, specifically carbon-based and non-conventional adsorbents, for the removal of malachite green, a widely used dye known for its toxic and carcinogenic properties. Carbon-based adsorbents encompass two main types: activated carbon and biochar, while non-conventional adsorbents refer to… More > Graphic Abstract

    Malachite Green Adsorption Using Carbon-Based and Non-Conventional Adsorbent Made from Biowaste and Biomass: A Review

  • Open Access

    ARTICLE

    The Ability of Some Aquatic and Terrestrial Plants to Purify Domestic Wastewater

    Abida Kausar1,*, Noreen Zahra1,2, Humaira Kiran1, Sadia Asim3, Abid Raza4, Ali Raza5,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.8, pp. 2245-2260, 2023, DOI:10.32604/phyton.2023.028264

    Abstract The study aimed to evaluate the ability of some terrestrial and aquatic plants for wastewater purification. Aquatic plants can remove pollutants from wastewater by consuming and accumulating various contaminants in different parts of plants. Different aquatic and terrestrial plants (Rosa sinensis, Typha latifolia, Ocimm bacilicum, Azolla pinnata, and Salvinia molesta) which have the ability to decrease water pollution were utilized in this study. The capability of five different species of plants was investigated by measuring chemical oxygen demand (COD), biological oxygen demand (BOD), electrical conductivity (EC), total dissolved solids (TDS), and pH of the medium. In this research, some aquatic… More >

  • Open Access

    ARTICLE

    Prediction of the Wastewater’s pH Based on Deep Learning Incorporating Sliding Windows

    Aiping Xu1,2, Xuan Zou3, Chao Wang2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1043-1059, 2023, DOI:10.32604/csse.2023.039645

    Abstract To protect the environment, the discharged sewage’s quality must meet the state’s discharge standards. There are many water quality indicators, and the pH (Potential of Hydrogen) value is one of them. The natural water’s pH value is 6.0–8.5. The sewage treatment plant uses some data in the sewage treatment process to monitor and predict whether wastewater’s pH value will exceed the standard. This paper aims to study the deep learning prediction model of wastewater’s pH. Firstly, the research uses the random forest method to select the data features and then, based on the sliding window, convert the data set into… More >

  • Open Access

    ARTICLE

    Chicken Eggshell as an Innovative Bioflocculant in Harvesting Biofloc for Aquaculture Wastewater Treatment

    Hajjar Hartini Wan Jusoh1, Nor Azman Kasan2,*, Hidayah Manan2, Nurfarahana Mohd Nasir1,3, Fareza Hanis Mohd Yunos1, Sofiah Hamzah1, Ahmad Jusoh1,2,*

    Journal of Renewable Materials, Vol.11, No.5, pp. 2321-2332, 2023, DOI:10.32604/jrm.2023.026086

    Abstract Implementation of biofloc technology (BFT) system in aquaculture industry shows high productivity, low feed conversion ratio, and an optimum culture environment. This study was divided into two phases. The first phase involved maintaining the water quality using the optimum carbon-to-nitrogen ratio by manipulating pH in culture water. The second phase examined the performance of harvesting biofloc (remaining phytoplankton and suspended solids in the system) using chicken eggshell powder (CESP). This study showed that pH 7 to 8 were the best biofloc performance with high removal percentage of ammonia (>99%) with a remaining ammonia concentration of 0.016 mg L−1 and 0.018… More > Graphic Abstract

    Chicken Eggshell as an Innovative Bioflocculant in Harvesting Biofloc for Aquaculture Wastewater Treatment

  • Open Access

    ARTICLE

    Modeling Date Palm Trunk Fibers (DPTF) Packed Bed Adsorption Performances for Cadmium Removal from Aqueous Wastewater

    Ahmad S. Awad1.*, Banan Hudaib2, Waid Omar2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.6, pp. 1535-1549, 2023, DOI:10.32604/fdmp.2023.024300

    Abstract In this study, the potential of a low-cost bio-adsorbent, taken directly from Date Palm Trunk Fibers (DPTF) agricultural wastes, for cadmium ions removal from wastewaters is examined. The performances of this adsorbent are evaluated by building breakthrough curves at different bed heights and flow rates while keeping other parameters, such as the initial feed concentration, pH, and particle size, constant. The results indicate that the maximum cadmium adsorption capacity of DTPF can be obtained from the Thomas model as 51.5 mg/g with the most extended mass transfer zone of 83 min at the lowest flow rate at 5 ml/min. The… More > Graphic Abstract

    Modeling Date Palm Trunk Fibers (DPTF) Packed Bed Adsorption Performances for Cadmium Removal from Aqueous Wastewater

  • Open Access

    ARTICLE

    Application of Submerged Ultrafiltration in Pretreatment of Flue Gas Desulfurization Wastewater

    Jiageng Zhang1, Zhengfeng Wang2, Jiguang Huang1, Chao Cheng1, Heng Zhang1, Dan Gao1,*

    Energy Engineering, Vol.119, No.6, pp. 2277-2296, 2022, DOI:10.32604/ee.2022.020795

    Abstract

    Nowadays, the zero liquid discharge of flue gas desulfurization (FGD) wastewater from coal-fired units has attracted the attention of all countries in the world. The pretreatment methods generally have the problems of high operation cost, small treatment capacity, and poor flexibility. However, the membrane method can avoid the above problems. In the current research, it has not been found that someone directly uses submerged ultrafiltration to pretreat FGD wastewater. Therefore, this paper innovatively proposed to directly use ceramic ultrafiltration membrane to treat FGD wastewater, which can ensure effluent quality and improve the flexibility of the pretreatment system. In this paper,… More >

  • Open Access

    ARTICLE

    Experimental Study on the Treatment of Tertiary Oil Recovery Wastewater via a Novel Electro-Coagulation Method

    Wei Cui1,2,*, Zhilun Yan1,2, Zhi Tang1,2, Mengyao Xu1,2, Jian Tian1,2, Chengyi Shen1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.1, pp. 51-60, 2023, DOI:10.32604/fdmp.2023.021499

    Abstract At present, methods for treating tertiary oil recovery wastewater via electro-coagulation are still in their early stage of development. In this study, a device for electro-coagulation wastewater treatment was built and tested in an oil field. The effects that the initial pH value, electrode type, and connection mode have on the coagulation and separation effect were assessed by measuring the mass fraction and turbidity of oil. The results have shown that when the electro-coagulation method is used, the effectiveness of the treatment can be significantly increased in neutral pH conditions (pH = 7), in acidic conditions, and in alkaline conditions. Compared to… More >

  • Open Access

    ARTICLE

    Impact of Flow Rate in Integration with Solar Radiation on Color and COD Removal in Dye Contaminated Textile Industry Wastewater: Optimization Study

    Pradeep K. Majhi1, Rifat Azam1, Richa Kothari2,*, Naveen Kumar Arora1, V. V. Tyagi3

    Energy Engineering, Vol.119, No.1, pp. 419-427, 2022, DOI:10.32604/EE.2022.016973

    Abstract Dyes are an integral part of the dying industry and have significantly resulted in environmental pollution by altering the standard water quality after their discharge into the water bodies. The culprits behind the altered water quality are the pretreatment chemicals used during dying manufacturing processes. Various advanced treatment methods using conventional and advanced treatment options including solar energy have been put forth by researchers for the treatment of the dying effluents but, these methods have not proved significantly considerable. Therefore, the present study intends to check the efficiency of solar parabolic trough collector for treating the dying effluents in terms… More >

Displaying 1-10 on page 1 of 24. Per Page