Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (196)
  • Open Access

    ARTICLE

    Thermodynamic, Economic, and Environmental Analyses and Multi-Objective Optimization of Dual-Pressure Organic Rankine Cycle System with Dual-Stage Ejector

    Guowei Li1,*, Shujuan Bu2, Xinle Yang2, Kaijie Liang1, Zhengri Shao1, Xiaobei Song1, Yitian Tang3, Dejing Zong4

    Energy Engineering, Vol.121, No.12, pp. 3843-3874, 2024, DOI:10.32604/ee.2024.056195 - 22 November 2024

    Abstract A novel dual-pressure organic Rankine cycle system (DPORC) with a dual-stage ejector (DE-DPORC) is proposed. The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the high-pressure expander to pressurize a large quantity of exhaust gas to perform work for the low-pressure expander. This innovative approach addresses condensing pressure limitations, reduces power consumption during pressurization, minimizes heat loss, and enhances the utilization efficiency of waste heat steam. A thermodynamic model is developed with net output work, thermal efficiency, and exergy efficiency (Wnet, ηt, ηex) as evaluation criteria, an economic model is established… More >

  • Open Access

    PROCEEDINGS

    Three-Dimensionally Printed Transition Metal Catalysts with Hierarchically Porous Structures for Wastewater Purification

    Sheng Guo1,2,*, Mengmeng Yang1, Yao Huang2, Xizi Gao1, Chao Cai3,*, Kun Zhou4,5,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012655

    Abstract 3D printing technology has demonstrated considerable potential in wastewater remediation. Zero-valent metal (ZVM) has been recognized as an efficient catalyst facilitating the organic pollutant degradation in water. However, owing to its inclination toward oxidation and aggregation, the practical utilization of ZVM remains a challenge. Herein, we have employed 3D printing techniques to fabricate hierarchically porous ZVM, such as zero-valent copper and zero-valent iron, which exhibit a high level of printing precision and commendable resistance to compression. These 3D-ZVM catalysts can effectively activate peroxymonosulfate (PMS), thereby degrading various organic pollutants, including tetracycline, ciprofloxacin, rhodamine B, and… More >

  • Open Access

    ARTICLE

    Recovery of Solid Oxide Fuel Cell Waste Heat by Thermoelectric Generators and Alkali Metal Thermoelectric Converters

    Wenxia Zhu*, Baishu Chen, Lexin Wang, Chunxiang Wang

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1559-1573, 2024, DOI:10.32604/fhmt.2024.047351 - 30 October 2024

    Abstract A Solid Oxide Fuel Cell (SOFC) is an electrochemical device that converts the chemical energy of a substance into electrical energy through an oxidation-reduction mechanism. The electrochemical reaction of a solid oxide fuel cell (SOFC) generates heat, and this heat can be recovered and put to use in a waste heat recovery system. In addition to preheating the fuel and oxidant, producing steam for industrial use, and heating and cooling enclosed rooms, this waste heat can be used for many more productive uses. The large waste heat produced by SOFCs is a worry that must… More >

  • Open Access

    ARTICLE

    Why Sustainable Porous Carbon Should be Further Explored as Radar-Absorbing Material? A Comparative Study with Different Nanostructured Carbons

    Alan F.N. Boss1, Manuella G.C. Munhoz1, Gisele Amaral-Labat2, Rodrigo G.A. Lima2, Leonardo I. Medeiros2,3, Nila C.F.L. Medeiros2,3, Beatriz C.S. Fonseca2, Flavia L. Braghiroli4,*, Guilherme F.B. Lenz e Silva1

    Journal of Renewable Materials, Vol.12, No.10, pp. 1639-1659, 2024, DOI:10.32604/jrm.2024.056004 - 23 October 2024

    Abstract Radar Absorbing Materials (RAM) are a class of composites that can attenuate incident electromagnetic waves to avoid radar detection. Most carbon allotropes that have the potential to be used as RAM are either carbon nanotubes (CNTs), graphene, carbon black (CB) and ultimately, sustainable porous carbon (SPC). Here, black wattle bark waste (following tannin extraction) was used as a sustainable source to produce SPC made from biomass waste. It was characterized and used as a filler for a silicone rubber matrix to produce a flexible RAM. The electromagnetic performance of this composite was compared with composites… More >

  • Open Access

    ARTICLE

    Physio-Mechanical Characterization of Recycled Polyethylene Terephthalate and Soda-Lime Glass Waste Composite for Roof Tile Application

    Yusuf Olanrewaju Busari1,2,*, Issah Sadiq Ibrahim1, Kabir S. Ajao1, Norliana Mohd Abbas2, James Obafemi Adegbola1, Hassan Kobe Ibrahim3, Abdallah Reghioua4, Yusuf Lanre Shuaib-Babata1, Rachael Oluwatoyosi Idowu1

    Journal of Polymer Materials, Vol.41, No.3, pp. 117-129, 2024, DOI:10.32604/jpm.2024.055895 - 30 September 2024

    Abstract The research paper focuses on manufacturing composite materials from waste polyethylene terephthalate (PET) reinforced with soda-lime glass to provide a lightweight, less brittle, and high rust resistance when exposed to hazardous environment. In developing nations such as Nigeria, there is a significant surge in the volume of bottled water and other packaging materials used in households, leading to a rapid accumulation of biodegradable waste, that presents concerns such as the creation of landfills and health issues. PET are thermoplastic polymer that can be melted and shaped into various objects. This study involves the incorporation of… More >

  • Open Access

    ARTICLE

    Effect of Organic Waste and Inorganic Additives on Organic Matter Transformation and Mineral Availability in Composting Green Waste

    Abderrahim Boutasknit1,2,3, Mohamed Anli3, Rachid Lahlali4,*, Abdelilah Meddich2,3,5,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2227-2249, 2024, DOI:10.32604/phyton.2024.055629 - 30 September 2024

    Abstract Applying organic waste and inorganic additives during composting can be an effective and easy-to-control strategy for optimizing humification, maturation, and the availability of essential mineral elements in compost. In this respect, this study aims to evaluate the effect of organic (olive-mill waste and horse manure) and inorganic (phosphogypsum) additives on the evolution of maturity indices, aromatic compounds, and nutrient availability during composting. Four mixtures [horse manure + green waste (M1), olive-mill + green waste (M2), sewage-sludge + phos-phogypsum + green waste (M3), and green waste (M4)] were carried out. Physicochemical (temperature, pH, phosphorus, nitrogen, and… More >

  • Open Access

    ARTICLE

    Enhanced Dye Adsorption and Bacterial Removal of Magnetic Nanoparticle-Functionalized Bacterial Cellulose Acetate Membranes

    Heru Suryanto1,2,*, Daimon Syukri3, Fredy Kurniawan4, Uun Yanuhar5, Joseph Selvi Binoj6, Sahrul Efendi2, Fajar Nusantara2, Jibril Maulana7, Nico Rahman Caesar5, Komarudin Komarudin2

    Journal of Renewable Materials, Vol.12, No.9, pp. 1605-1624, 2024, DOI:10.32604/jrm.2024.054047 - 25 September 2024

    Abstract Utilizing biomass waste as a potential resource for cellulose production holds promise in mitigating environmental consequences. The current study aims to utilize pineapple biowaste extract in producing bacterial cellulose acetate-based membranes with magnetic nanoparticles (Fe3O4 nanoparticles) through the fermentation and esterification process and explore its characteristics. The bacterial cellulose fibrillation used a high-pressure homogenization procedure, and membranes were developed incorporating 0.25, 0.50, 0.75, and 1.0 wt.% of Fe3O4 nanoparticles as magnetic nanoparticle for functionalization. The membrane characteristics were measured in terms of Scanning Electron Microscope, X-ray diffraction, Fourier Transform Infrared, Vibrating Sample Magnetometer, antibacterial activity, bacterial… More > Graphic Abstract

    Enhanced Dye Adsorption and Bacterial Removal of Magnetic Nanoparticle-Functionalized Bacterial Cellulose Acetate Membranes

  • Open Access

    ARTICLE

    Phosphoric Acid Pretreatment and Saccharification of Paper Sludge as a Renewable Material for Cellulosic Fibers

    Samar El-Mekkawi1, Wafaa Abou-Elseoud2, Shaimaa Fadel2, Enas Hassan2, Mohammad Hassan2,*

    Journal of Renewable Materials, Vol.12, No.9, pp. 1573-1591, 2024, DOI:10.32604/jrm.2024.053589 - 25 September 2024

    Abstract Recycling of paper sludge waste is crucial for establishing a sustainable green industry. This waste contains valuable sugars that can be converted into important chemicals such as ethanol, poly hydroxybutyrate, and lactic acid. However, the main challenge in obtaining sugars in high yield from paper sludge is the high crystallinity of cellulose, which hinders hydrolysis. To address this, pretreatment using phosphoric acid was optimized using response surface methodology to facilitate cellulose hydrolysis with minimal energy and chemicals. The created prediction model using the response surface method considered factors such as acid concentration (ranging from 60%… More > Graphic Abstract

    Phosphoric Acid Pretreatment and Saccharification of Paper Sludge as a Renewable Material for Cellulosic Fibers

  • Open Access

    ARTICLE

    Reduction Discoloration of Reactive Dyed Cotton Waste and Chemical Recycling via Ionic Liquid

    Aline Ferreira Knihs, Larissa Klen Aragão, Miguel Angelo Granato, Andrea Cristiane Krause Bierhalz*, Rita de Cassia Siqueira Curto Valle

    Journal of Renewable Materials, Vol.12, No.9, pp. 1557-1571, 2024, DOI:10.32604/jrm.2024.052963 - 25 September 2024

    Abstract The textile industry generates large volumes of waste throughout its production process. Most of this waste is colored, therefore, discoloration is an important step toward recycling and reusing this waste. This study focused on the chemical reductive discoloration of textile waste composed of cotton dyed with reactive dye. The experimental design demonstrated the significant influence of the concentration of reducing agent and time of reaction on the degree of whiteness of the cotton fibers. The concentration of the alkaline agent was not significant in the process. The optimization of the reaction conditions lead to Berger… More > Graphic Abstract

    Reduction Discoloration of Reactive Dyed Cotton Waste and Chemical Recycling via Ionic Liquid

  • Open Access

    ARTICLE

    Removal of Dye Using Lignin-Based Biochar/Poly(ester amide urethane) Nanocomposites from Contaminated Wastewater

    Annesha Kar1, Niranjan Karak1,2,*

    Journal of Renewable Materials, Vol.12, No.9, pp. 1507-1540, 2024, DOI:10.32604/jrm.2024.052220 - 25 September 2024

    Abstract The pursuit of incorporating eco-friendly reinforcing agents in polymer composites has accentuated the exploration of various natural biomass-derived materials. The burgeoning environmental crisis spurred by the discharge of synthetic dyes into wastewater has catalyzed the search for effective and sustainable treatment technologies. Among the various sorbent materials explored, biochar, being renewable, has gained prominence due to its excellent adsorption properties and environmental sustainability. It has also emerged as a focal point for its potential to replace other conventional reinforcing agents, viz., fumed silica, aluminum oxide, treated clays, etc. This study introduces a novel class of… More > Graphic Abstract

    Removal of Dye Using Lignin-Based Biochar/Poly(ester amide urethane) Nanocomposites from Contaminated Wastewater

Displaying 1-10 on page 1 of 196. Per Page